PLANTS HAVING INCREASED TOLERANCE TO HERBICIDES (2024)

This application is a continuation of U.S. patent application Ser. No. 16/468,036, which is a U.S. National Stage application of International Application No. PCT/EP2017/083244, filed Dec. 18, 2017, which claims priority to European Patent Application No. 16205383.9, filed on Dec. 20, 2016. The entire contents of the aforementioned applications are hereby incorporated herein by reference in their entirety.

The Sequence Listing, which is a part of the present disclosure, is submitted concurrently with the specification as an XML file. The name of the file containing the Sequence Listing is “78939A_Seqlisting.xml”, which was created on Dec. 8, 2023 and is 202,681 bytes in size. The subject matter of the Sequence Listing is incorporated herein in its entirety by reference.

The present invention relates in general to methods for conferring on plants agricultural level tolerance to a herbicide. Particularly, the invention refers to plants having an increased tolerance to PPO-inhibiting herbicides. More specifically, the present invention relates to methods and plants obtained by mutagenesis and cross-breeding and transformation that have an increased tolerance to PPO-inhibiting herbicides.

Herbicides that inhibit protoporphyrinogen oxidase (hereinafter referred to as Protox or PPO; EC:1.3.3.4), a key enzyme in the biosynthesis of protoporphyrin IX, have been used for selective weed control since the 1960s. PPO catalyzes the last common step in chlorophyll and heme biosynthesis which is the oxidation of protoporphyrinogen IX to protoporphyrin IX. (Matringe et al. 1989. Biochem. 1. 260: 231). PPO-inhibiting herbicides include many different structural classes of molecules (Duke et al. 1991. Weed Sci. 39: 465; Nandihalli et al. 1992. Pesticide Biochem. Physiol. 43: 193; Matringe et al. 1989. FEBS Lett. 245: 35; Yanase and Andoh. 1989. Pesticide Biochem. Physiol. 35: 70). These herbicidal compounds include the diphenylethers (e.g. lactofen, (+−)-2-ethoxy-1-methyl-2-oxoethyl 5-{2-chloro-4-(trifluoromethyl)phenoxy}-2-nitrobenzoate; acifluorfen, 5-{2-chloro-4-(trifluoromethyl)phenoxy}-2-nitrobenzoic acid; its methyl ester; or oxyfluorfen, 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluorobenzene)}, oxidiazoles, (e.g. oxidiazon, 3-{2,4-dichloro-5-(1-methylethoxy)phenyl}-5-(1,1-dimethylethyl)-1,3,4-oxadiazol-2-(3H)-one), cyclic imides (e.g. S-23142, N-(4-chloro-2-fluoro-5-propargyloxyphenyl)-3,4,5,6-tetrahydrophthalimide; chlorophthalim, N-(4-chlorophenyl)-3,4,5,6-tetrahydrophthalimide), phenyl pyrazoles (e.g. TNPP-ethyl, ethyl 2-{1-(2,3,4-trichlorophenyl)-4-nitropyrazolyl-5-oxy}propionate; M&B 39279), pyridine derivatives (e.g. LS 82-556), and phenopylate and its O-phenylpyrrolidino- and piperidinocarbamate analogs. Many of these compounds competitively inhibit the normal reaction catalyzed by the enzyme, apparently acting as substrate analogs.

Application of PPO-inhibiting herbicides results in the accumulation of protoporphyrinogen IX in the chloroplast and mitochondria, which is believed to leak into the cytosol where it is oxidized by a peroxidase. When exposed to light, protoporphyrin IX causes formation of singlet oxygen in the cytosol and the formation of other reactive oxygen species, which can cause lipid peroxidation and membrane disruption leading to rapid cell death (Lee et al. 1993. Plant Physiol. 102: 881).

Not all PPO enzymes are sensitive to herbicides which inhibit plant PPO enzymes. Both the Escherichia coli and Bacillus subtilis PPO enzymes (Sasarmen et al. 1993. Can. J. Microbiol. 39: 1155; Dailey et al. 1994. J. Biol. Chem. 269: 813) are resistant to these herbicidal inhibitors. Mutants of the unicellular alga Chlamydomonas reinhardtii resistant to the phenylimide herbicide S-23142 have been reported (Kataoka et al. 1990. J. Pesticide Sci. 15: 449; Shibata et al. 1992. In Research in Photosynthesis, Vol. III, N. Murata, ed. Kluwer:Netherlands. pp. 567-70). At least one of these mutants appears to have an altered PPO activity that is resistant not only to the herbicidal inhibitor on which the mutant was selected, but also to other classes of protox inhibitors (Oshio et al. 1993. Z. Naturforsch. 48c: 339; Sato et al. 1994. In ACS Symposium on Porphyric Pesticides, S. Duke, ed. ACS Press: Washington, D.C.). A mutant tobacco cell line has also been reported that is resistant to the inhibitor S-21432 (Che et al. 1993. Z. Naturforsch. 48c: 350). Auxotrophic E. coli mutants have been used to confirm the herbicide resistance of cloned plant PPO-inhibting herbicides.

Three main strategies are available for making plants tolerant to herbicides, i.e. (1) detoxifying the herbicide with an enzyme which transforms the herbicide, or its active metabolite, into non-toxic products, such as, for example, the enzymes for tolerance to bromoxynil or to basta (EP242236, EP337899); (2) mutating the target enzyme into a functional enzyme which is less sensitive to the herbicide, or to its active metabolite, such as, for example, the enzymes for tolerance to glyphosate (EP293356, Padgette S. R. et al., J. Biol. Chem., 266, 33, 1991); or (3) overexpressing the sensitive enzyme so as to produce quantities of the target enzyme in the plant which are sufficient in relation to the herbicide, in view of the kinetic constants of this enzyme, so as to have enough of the functional enzyme available despite the presence of its inhibitor. The third strategy was described for successfully obtaining plants which were tolerant to PPO inhibitors (see e.g. U.S. Pat. No. 5,767,373 or U.S. Pat. No. 5,939,602, and patent family members thereof.). In addition, US 2010/0100988 and WO 2007/024739 discloses nucleotide sequences encoding amino acid sequences having enzymatic activity such that the amino acid sequences are resistant to PPO inhibitor herbicidal chemicals, in particular 3-phenyluracil inhibitor specific PPO mutants.

WO 2012/080975 discloses plants the tolerance of which to a PPO-inhibiting herbicide. In particular, WO 2012/080975 discloses that the introduction of nucleic acids which code for a mutated PPO of an Amaranthus type II PPO in which the Arginine at position 128 had been replaced by a leucine, alanine, or valine, and the phenylalanine at position 420 had been replaced by a methionine, cysteine, isoleucine, leucine, or threonine, confers increased tolerance/resistance to a benzoxazinone-derivative herbicide. WO 2013/189984 describes that the introduction of nucleic acids which code for a mutated PPO in which the leucine corresponding to position 397, and the phenylalanine corresponding to position 420 of an Amaranthus type II PPO are replaced confers increased tolerance/resistance to PPO inhibiting herbicides. WO2015/022636 describes novel PPO mutants in which which the arginine corresponding to position 128, and the phenylalanine corresponding to position 420 of an Amaranthus type II PPO are replaced by amino acids which are different from those disclosed by WO 2012/080975.

WO2015/022640 discloses novel PPO enzymes and mutants thereof derived from Alopecurus myosuroides. WO2015/092706 decribes that the transfer of mutations from Amaranthus (as decribed above) into crop PPO sequences show an increased tolerance effect in plant. U.S. Pat. No. 7,671,254 describes mutated PPO of an Amaranthus type II PPO in which the glycine at positions 210 and/or 211 are deleted. In contrast to positions corresponding to 128, 397, and 420, said positions 210 and/or 211 are known to lie outside the catalytic site of PPO (“non-active sites”). The inventors of the present invention have now surprisingly found out that a substitution of amino acids at Gly210/211, or at other non-active sites, in particular when combined with a substitution at positions at active sites, i.e. corresponding to positions 128, 397, and/or 420 of the Amaranthus type II PPO increase herbicide tolerance.

Accordingly, in one aspect, the present invention provides a plant or plant part comprising a polynucleotide encoding a mutated PPO polypeptide, the expression of said polynucleotide confers to the plant or plant part tolerance to herbicides.

In a preferred embodiment, said mutated PPO polypeptide comprises one or more of the following motifs.

i) Motif 1:
(SEQ ID NO: 131)
GT[C/S]GGDP
    • Wherein the glycine at position 4, and/or 5 within said motif of the corresponding wildt e sequence is substituted by any other amino acid
ii) Motif 2:
(SEQ ID NO: 132)
[A/S/C]PS[D/N][X][X]L
    • Wherein the serine at position 3 within said motif of the corresponding wildtype sequence is substituted by any other amino acid
iii) Motif 3:
(SEQ ID NO: 133)
[R/Q][E/D]KQQ[L/Y]P
    • Wherein the glutamine at position 4 within said motif of the corresponding wildt e sequence is substituted b any other amino acid
iv) Motif 4:
(SEQ ID NO: 134)
L[I/V]PSKE
    • wherein the serine at position 4 within said motif of the corresponding wildtype sequence is substituted by any other amino acid.

Preferably, said mutated PPO polypeptide in addition comprises one or more of the following motifs

    • a. Motif 5: SQ[N/K/H]KRYI (SEQ ID NO: 135), wherein the Arg at position 5 within said motif is substituted by any other amino acid;
    • b. Motif 6: TLGTLFSS (SEQ ID NO: 136), wherein the Leu at position 2 within said motif is substituted by by any other amino acid;
    • c. Motif 7: [F/Y]TTF[V/I]GG (SEQ ID NO: 137), wherein the Phe at position 4 within said motif is substituted by by any other amino acid.

In some aspects, the present invention provides a seed capable of germination into a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In one aspect, the present invention provides a plant cell capable of regenerating a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides, wherein the plant cell comprises the polynucleotide operably linked to a promoter.

In another aspect, the present invention provides a plant cell comprising a polynucleotide operably linked to a promoter operable in a cell, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In other aspects, the present invention provides a plant product prepared from a plant or plant part comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In some aspects, the present invention provides a progeny or descendant plant derived from a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, wherein the progeny or descendant plant comprises in at least some of its cells the recombinant polynucleotide operably linked to the promoter, the expression of the mutated PPO polypeptide conferring to the progeny or descendant plant tolerance to the herbicides.

In other aspects, the present invention provides a method for controlling weeds at a locus for growth of a plant, the method comprising: (a) applying an herbicide composition comprising herbicides to the locus; and (b) planting a seed at the locus, wherein the seed is capable of producing a plant that comprises in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In some aspects, the present invention provides a method for controlling weeds at a locus for growth of a plant, the method comprising: applying an herbicidal composition comprising herbicides to the locus; wherein said locus is: (a) a locus that contains: a plant or a seed capable of producing said plant; or (b) a locus that is to be after said applying is made to contain the plant or the seed; wherein the plant or the seed comprises in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In one aspect, step (a) occurs before, after, or concurrently with step (b).

In other aspects, the present invention provides a method of producing a plant having tolerance to herbicides, the method comprising regenerating a plant from a plant cell transformed with a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In one aspect, the present invention provides a method of producing a progeny plant having tolerance to herbicides, the method comprising: crossing a first herbicide-tolerant plant with a second plant to produce a herbicide-tolerant progeny plant, wherein the first plant and the progeny plant comprise in at least some of their cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide of the present invention, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

In addition, the present invention refers to a method for identifying a herbicide by using a mutated PPO of the present invention.

Said method comprises the steps of:

    • a) generating a transgenic cell or plant comprising a nucleic acid encoding a mutated PPO of the present invention, wherein the mutated PPO of the present invention is expressed;
    • b) applying a herbicide to the transgenic cell or plant of a) and to a control cell or plant of the same variety;
    • c) determining the growth or the viability of the transgenic cell or plant and the control cell or plant after application of said test compound, and
    • d) selecting test compounds which confer reduced growth to the control cell or plant as compared to the growth of the transgenic cell or plant.

Another object refers to a method of identifying a nucleotide sequence encoding a mutated PPO of the present invention which is resistant or tolerant to a herbicide, the method comprising:

    • a) generating a library of mutated PPO-encoding nucleic acids,
    • b) screening a population of the resulting mutated PPO-encoding nucleic acids by expressing each of said nucleic acids in a cell or plant and treating said cell or plant with a herbicide,
    • c) comparing the herbicide-tolerance levels provided by said population of mutated PPO encoding nucleic acids with the herbicide-tolerance level provided by a control PPO-encoding nucleic acid,
    • d) selecting at least one mutated PPO-encoding nucleic acid that provides a significantly increased level of tolerance to a herbicide as compared to that provided by the control PPO-encoding nucleic acid.

In a preferred embodiment, the mutated PPO-encoding nucleic acid selected in step d) provides at least 2-fold as much tolerance to a herbicide as compared to that provided by the control PPO-encoding nucleic acid.

The resistance or tolerance can be determined by generating a transgenic plant comprising a nucleic acid sequence of the library of step a) and comparing said transgenic plant with a control plant.

Another embodiment refers to an isolated and/or recombinantly produced and/or synthetic nucleic acid molecule comprising a nucleic acid molecule encoding a mutated PPO polypeptide selected from the group consisting of:

    • (a) a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof;
    • (b) a nucleic acid molecule, which, as a result of the degeneracy of the genetic code, can be derived from a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof, and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (c) a nucleic acid molecule encoding a mutated PPO polypeptide having 30% or more identity, preferably at least 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more, with the amino acid sequence of the PPO polypeptide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (d) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a), (b), or (c), under stringent hybridization conditions and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • wherein the amino acid sequence of the encoded mutated PPO polypeptide differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 32, 53, 57, 61, 63, 64, 65, 67, 71, 76, 82, 83, 85, 86, 87, 88, 91, 103, 104, 106, 108, 116, 119, 126, 127, 129, 139, 159, 210, 211, 224, 245, 246, 248, 249, 252, 253, 254, 255, 257, 259, 260, 262, 264, 286, 291, 305, 308, 309, 323, 335, 343, 345, 358, 372, 373, 387, 391, 392, 400, 412, 414, 415, 425, 428, 431, 433, 434, 435, 436, 447, 451, 453, 464, 466, 482 of SEQ ID NO: 1 or 2, wherein said difference refers to a substitution of the amino acid at that positions by any other amino acid.

Another embodiment refers to an isolated and/or recombinantly produced and/or synthetic nucleic acid molecule comprising a nucleic acid molecule encoding a mutated PPO polypeptide selected from the group consisting of:

    • (a) a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof;
    • (b) a nucleic acid molecule, which, as a result of the degeneracy of the genetic code, can be derived from a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof, and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (c) a nucleic acid molecule encoding a mutated PPO polypeptide having 30% or more identity, preferably at least 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more, with the amino acid sequence of the PPO polypeptide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (d) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a), (b), or (c), under stringent hybridization conditions and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • wherein the amino acid sequence of the encoded mutated PPO polypeptide differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 40, 250, 391, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534 of SEQ ID NO: 1 or 2, wherein said difference refers to a deletion or an insertion of the amino acid at that positions.

Preferably, the difference corresponding to position 391 of SEQ ID NO:1 referes to an insertion, and the difference corresponding to positions 40, 250, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534 of SEQ ID NO: 1 or 2 refers to a deletion.

Another object refers to an expression cassette comprising the nucleic acid molecule of the present invention and a promoter operable in plant cells.

Another object refers to an isolated, recombinant and/or chemically synthesized mutated PPO polypeptide encoded by the nucleic acid molecule as claimed in any of claims 17 to 25 or a polypeptide having at least 80%, 90%, 95%, 98%, 99% identity to the sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof, wherein the amino acid sequence of the mutated PPO polypeptide differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 32, 53, 57, 61, 63, 64, 65, 67, 71, 76, 82, 83, 85, 86, 87, 88, 91, 103, 104, 106, 108, 116, 119, 126, 127, 129, 139, 159, 210, 211, 224, 245, 246, 248, 249, 252, 253, 254, 255, 257, 259, 260, 262, 264, 286, 291, 305, 308, 309, 323, 335, 343, 345, 358, 372, 373, 387, 391, 392, 400, 412, 414, 415, 425, 428, 431, 433, 434, 435, 436, 447, 451, 453, 464, 466, 482 of SEQ ID NO: 1 or 2, wherein said difference refers to a substitution of the amino acid at that positions by any other amino acid.

Another object refers to an isolated, recombinant and/or chemically synthesized mutated PPO polypeptide encoded by the nucleic acid molecule as claimed in any of claims 17 to 25 or a polypeptide having at least 80%, 90%, 95%, 98%, 99% identity to the sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof, wherein the amino acid sequence of the mutated PPO polypeptide differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 40, 250, 391, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534 of SEQ ID NO: 1 or 2, wherein said difference refers to a deletion or an insertion of the amino acid at that positions.

In still further aspects, the present invention provides a plant or plant part comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides, wherein the plant or plant part further exhibits a second or third herbicide-tolerant trait.

In another embodiment, the invention refers to a plant cell transformed by and expressing a mutated PPO nucleic acid according to the present invention or a plant which has been mutated to obtain a plant expressing, preferably over-expressing a mutated PPO nucleic acid according to the present invention, wherein expression of said nucleic acid in the plant cell results in increased resistance or tolerance to a herbicide as compared to a wild type variety of the plant cell In another embodiment, the invention refers to a plant comprising a plant cell according to the present invention, wherein expression of the nucleic acid in the plant results in the plant's increased resistance to herbicide as compared to a wild type variety of the plant.

The plants of the present invention can be transgenic or non-transgenic.

Preferably, the expression of the nucleic acid of the invention in the plant results in the plant's increased resistance to herbicides as compared to a wild type variety of the plant.

In another embodiment, the invention refers to a seed produced by a transgenic plant comprising a plant cell of the present invention, wherein the seed is true breeding for an increased resistance to a herbicide as compared to a wild type variety of the seed.

In another embodiment, the invention refers to a method of producing a transgenic plant cell with an increased resistance to a herbicide as compared to a wild type variety of the plant cell comprising, transforming the plant cell with an expression cassette comprising a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide.

In another embodiment, the invention refers to a method of producing a transgenic plant comprising, (a) transforming a plant cell with an expression cassette comprising a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, and (b) generating a plant with an increased resistance to herbicide from the plant cell.

Preferably, the expression cassette further comprises a transcription initiation regulatory region and a translation initiation regulatory region that are functional in the plant.

FIG. 1 shows a germination assay using transgenic Arabidopsis plants (SEQ ID NO:1 mutated AMATU_PPO2_G211A_F420M). Plants were treated with the indicated concentrations of Saflufenacil. Pictures were taken 14 days after treatment.

FIG. 2 shows T1 Tolerance Spray using transgenic Arabidopsis plants (SEQ ID NO:1 mutated AMATU_PPO2_G211A_F420M). Pictures were taken 8 days after treatment (days after spraying). Top at bottom contain 2 wild type plants, upper 5 pots contain independent transgenic events (T1 plants, selected by confirming presence of resistance gene AHAS).

FIG. 3 shows Transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Saflufenacil+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_L397Q_F420M, D) AMATU_PPO2_R128A_F420M E) AMATU_PPO2_F420V F) AMATU_PP02_L397Q_F420M G) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 4 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Trifludimoxazine+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_F420V, D) AMATU_PPO2_G211A_L397Q_F420M, E) AMATU_PPO2_R128A_F420M F) AMATU_PPO2_F420V G) AMATU_PPO2_L397Q_F420M H) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 5 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Saflufenacil+Trifludimoxazine+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_F420V, D) AMATU_PPO2_G211A_L397Q_F420M, E) AMATU_PPO2_R128A_F420M F) AMATU_PPO2_F420V G) AMATU_PPO2_L397Q_F420M H) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 6 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Uracilpyridine 2+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_F420V, D) AMATU_PPO2_G211A_L397Q_F420M, E) AMATU_PPO2_R128A_F420M F) AMATU_PPO2_F420V G) AMATU_PPO2_L397Q_F420M H) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 7 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Uracilpyridine 4+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_F420V, D) AMATU_PPO2_G211A_L397Q_F420M, E) AMATU_PPO2_R128A_F420M F) AMATU_PPO2_F420V G) AMATU_PPO2_L397Q_F420M H) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 8 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Uracilpyridine 1+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_L397Q_F420M, D) AMATU_PPO2_R128A_F420M E) AMATU_PPO2_F420V F) AMATU_PP02_L397Q_F420M G) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 9 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Sulfentrazone+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_G211A_L397Q_F420M, D) AMATU_PPO2_R128A_F420M E) AMATU_PPO2_F420V F) AMATU_PP02_L397Q_F420M G) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 10 shows transgenic Arabidopsis plants sprayed post in the greenhouse with the indicated amount of Flumioxazin+1% (v/v) MSO. Plants harbor the SEQ ID NO:1 mutated traits: A) AMATU_PPO2_R128A_G210S_F420M, B) AMATU_PPO2_R128A_S387L_F420M, C) AMATU_PPO2_R128A_F420M D) AMATU_PPO2_F420V E) AMATU_PPO2_L397Q_F420M F) Wild-type (non-transgenic). Evaluation performed 6 Days After Treatment (DAT).

FIG. 11 shows transgenic Arabidopsis plants harboring SEQ ID NO:1 mutated AMATU_PPO2_G211A_F420M construct, sprayed post in the greenhouse with the indicated amount of A) Saflufenacil+Trifludimoxazine, B) Tiafenacil, C) Uracilpyridine 6, D) Pyraflufen-ethyl, E) Uracilpyridine 7, with +1% (v/v) MSO. Evaluation performed 14 Days After Treatment (DAT) and is shown as injury (%) relative to non-transgenic treated plants.

FIG. 12 shows examples of transgenic Zea mays harboring AmtuPPX2L variants after pre-emergent treatment with Saflufenacil.

FIG. 13 shows tolerance of transgenic Glycine max harboring AmtuPPX2L variants after treatment with a mixture of Saflufenacil and Trifludimoxazine. 0/0 denotes no active ingredient, 50/25 denotes 50 grams of active ingredient per hectare (AI/Ha) of Saflufenacil and 25 grams AI/Ha of Trifludimoxazine, 100/50 denotes 100 g AI/Ha Saflufenacil and 50 g AI/Ha Trifludimoxazine and 200/100 denotes 200 g AI/Ha Saflufenacil and 100 g AI/Ha Trifludimoxazine. Wild type untransformed is represented by the soy (Glycine max) cultivar Jake (cv. Jake).

FIG. 14 shows examples of herbicide tolerance of transgenic Glycine max harboring AmtuPPX2L variants after treatment with a mixture of Saflufenacil and Trifludimoxazine. 0/0 denotes no active ingredient, 25/50 denotes 50 grams of active ingredient per hectare (AI/Ha) of Saflufenacil and 25 grams AI/Ha of Trifludimoxazine, 50/100 denotes 100 g AI/Ha Saflufenacil and 50 g AI/Ha Trifludimoxazine and 100/200 denotes 200 g AI/Ha Saflufenacil and 100 g AI/Ha Trifludimoxazine. Wild type untransformed is represented by the soy (Glycine max) cultivar Jake (cv. Jake).

LEGEND TO SEQUENCE LISTING
SEQ IDOrganism
1Amaranthus tuberculatus
2Amaranthus tuberculatus
3Amaranthus tuberculatus
4Amaranthus tuberculatus
5Amaranthus hypochondriacus
6Amaranthus tuberculatus
7Spinacia oleracea
8Vitis vinifera
9Ricinus communis
10Theobroma cacao
11Glycine max
12Prunus persica
13Medicago truncatula
14Fragaria vesca subsp. vesca
15Citrus clementina
16Citrus clementina
17Cicer arietinum
18Cucumis sativus
19Cucumis sativus
20Nicotiana tabacum
21Solanum lycopersicum
22Arabidopsis thaliana
23Arabidopsis lyrata subsp. lyrata
24Arabidopsis thaliana
25Arabidopsis thaliana
26Ambrosia artemisiifolia
27Setaria italica
28Sorghum bicolor
29Arabidopsis thaliana
30Zea mays
31Zea mays
32LEMPA
33LEMPA
34Populus trichocarpa
35Capsella rubella
36Brachypodium distachyon
37Oryza sativa Japonica Group
38Picea sitchensis
39Solarium tuberosum
40Oryza sativa Indica Group
41Oryza sativa Japonica Group
42Eutrema salsugineum
43Selaginella moellendorffii
44Selaginella moellendorffii
45Amaranthus tuberculatus
46Amaranthus tuberculatus
47Zea mays
48Aegilops tauschii
49Genlisea aurea
50Amborella trichopoda
51Rhodothermus marinus
52Salinibacter ruber
53Salinibacter ruber M8
54Zea mays
55Rhodothermus marinus
56Caldithrix abyssi
57Opitutus terrae PB90-1
58Verrucomicrobia bacterium
59Ignavibacterium album
60Coraliomargarita sp. CAG:312
61Salisaeta longa
62Ambrosia artemisiifolia
63Melioribacter roseus P3M-2
64Halothiobacillus neapolitanus c2
65Chondrus crispus
66Rubritalea marina
67Acidobacteria bacterium
68Coraliomargarita akajimensis DSM 45221
69Oscillochloris trichoides DG6
70Opitutaceae bacterium TAV1
71Amborella trichopoda
72Opitutaceae bacterium TAV5
73Chloroflexus sp. Y-400-fl
74Leptospirillum sp. Group II ‘5-way CG’
75Leptospirillum ferriphilum ML-04
76Verrucomicrobia bacterium SCGC AAA300-O17
77Chloroflexus aggregans DSM 9485
78Desulfurobacterium thermolithotrophum
79Desulfurobacterium sp. TC5-1
80Arthrospira platensis C1
81Leptospirillum sp. Group II ‘C75’
82Verrucomicrobiae bacterium DG1235
83Verrucomicrobia bacterium SCGC AAA300-K03
84Synechococcus sp. JA-3-3Ab
85Hymenobacter norwichensis
86Pontibacter sp. BAB1700
87Leptospirillum ferrodiazotrophum
88Prevotella histicola F0411
89Flexithrix dorotheae
90Geobacter metallireducens GS-15
91Synechococcus sp. JA-2-3B′a(2-13)
92Crinalium epipsammum PCC 9333
93Planctomyces maris
94Geobacter uraniireducens Rf4
95Acidithiobacillus ferrivorans
96Prevotella melaninogenica
97Thermovibrio ammonificans
98Brassica_rapa
99Brassica_rapa
100Gossypium
101Gossypium
102Conyza_canadensis
103Conyza_canadensis
104Kochia_scobaria
105Lolium_rigidum
106Lolium_rigidum
107Gossypium hirsutum PPO1
108Beta vulgaris PPO1
109Hordeum vulgare PPO1
110Hordeum vulgare PPO2
111Triticum aestivum PPO1
112Solarium lycopersicum PPO2
113Triticum aestivum PPO1_v2
114Gossypium hirsutum PPO1_v2
115Gossypium hirsutum PPO2
116Beta vulgaris PPO1_v2
117Brassica napus_PPO2
129Alopecurus myosuroides

The articles “a” and “an” are used herein to refer to one or more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one or more elements.

As used herein, the word “comprising,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

The term “control of undesired vegetation or weeds” is to be understood as meaning the killing of weeds and/or otherwise retarding or inhibiting the normal growth of the weeds. Weeds, in the broadest sense, are understood as meaning all those plants which grow in locations where they are undesired. The weeds of the present invention include, for example, dicotyledonous and monocotyledonous weeds. Dicotyledonous weeds include, but are not limited to, weeds of the genera: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, and Taraxacum. Monocotyledonous weeds include, but are not limited to, weeds of of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, and Apera. In addition, the weeds of the present invention can include, for example, crop plants that are growing in an undesired location. For example, a volunteer maize plant that is in a field that predominantly comprises soybean plants can be considered a weed, if the maize plant is undesired in the field of soybean plants.

The term “plant” is used in its broadest sense as it pertains to organic material and is intended to encompass eukaryotic organisms that are members of the Kingdom Plantae, examples of which include but are not limited to vascular plants, vegetables, grains, flowers, trees, herbs, bushes, grasses, vines, ferns, mosses, fungi and algae, etc, as well as clones, offsets, and parts of plants used for asexual propagation (e.g. cuttings, pipings, shoots, rhizomes, underground stems, clumps, crowns, bulbs, corms, tubers, rhizomes, plants/tissues produced in tissue culture, etc.). The term “plant” further encompasses whole plants, ancestors and progeny of the plants and plant parts, including seeds, shoots, stems, leaves, roots (including tubers), flowers, florets, fruits, pedicles, peduncles, stamen, anther, stigma, style, ovary, petal, sepal, carpel, root tip, root cap, root hair, leaf hair, seed hair, pollen grain, microspore, cotyledon, hypocotyl, epicotyl, xylem, phloem, parenchyma, endosperm, a companion cell, a guard cell, and any other known organs, tissues, and cells of a plant, and tissues and organs, wherein each of the aforementioned comprise the gene/nucleic acid of interest. The term “plant” also encompasses plant cells, suspension cultures, callus tissue, embryos, meristematic regions, gametophytes, sporophytes, pollen and microspores, again wherein each of the aforementioned comprises the gene/nucleic acid of interest.

Plants that are particularly useful in the methods of the invention include all plants which belong to the superfamily Viridiplantae, in particular monocotyledonous and dicotyledonous plants including fodder or forage legumes, ornamental plants, food crops, trees or shrubs selected from the list comprising Acer spp., Actinidia spp., Abelmoschus spp., Agave sisalana, Agropyron spp., Agrostis stolonifera, Allium spp., Amaranthus spp., Ammophila arenaria, Ananas comosus, Annona spp., Apium graveolens, Arachis spp, Artocarpus spp., Asparagus officinalis, Avena spp. (e.g. Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida), Averrhoa carambola, Bambusa sp., Benincasa hispida, Bertholletia excelsea, Beta vulgaris, Brassica spp. (e.g. Brassica napus, Brassica rapa ssp. [canola, oilseed rape, turnip rape]), Cadaba farinosa, Camellia sinensis, Canna indica, Cannabis sativa, Capsicum spp., Carex elata, Carica papaya, Carissa macrocarpa, Carya spp., Carthamus tinctorius, Castanea spp., Ceiba pentandra, Cichorium endivia, Cinnamomum spp., Citrullus lanatus, Citrus spp., Cocos spp., Coffea spp., Colocasia esculenta, Cola spp., Corchorus sp., Coriandrum sativum, Corylus spp., Crataegus spp., Crocus sativus, Cucurbita spp., Cucumis spp., Cynara spp., Daucus carota, Desmodium spp., Dimocarpus longan, Dioscorea spp., Diospyros spp., Echinochloa spp., Elaeis (e.g. Elaeis guineensis, Elaeis oleifera), Eleusine coracana, Eragrostis tef, Erianthus sp., Eriobotrya japonica, Eucalyptus sp., Eugenia uniflora, fa*gopyrum spp., fa*gus spp., Festuca arundinacea, Ficus carica, Fortunella spp., Fragaria spp., Ginkgo biloba, Glycine spp. (e.g. Glycine max, Soja hispida or Soja max), Gossypium hirsutum, Helianthus spp. (e.g. Helianthus annuus), Hemerocallis fulva, Hibiscus spp., Hordeum spp. (e.g. Hordeum vulgare), Ipomoea batatas, Juglans spp., Lactuca sativa, Lathyrus spp., Lens culinaris, Linum usitatissimum, Litchi chinensis, Lotus spp., Luffa acutangula, Lupinus spp., Luzula sylvatica, Lycopersicon spp. (e.g. Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme), Macrotyloma spp., Malus spp., Malpighia emarginata, Mammea americana, Mangifera indica, Manihot spp., Manilkara zapota, Medicago sativa, Melilotus spp., Mentha spp., Miscanthus sinensis, Momordica spp., Morus nigra, Musa spp., Nicotiana spp., Olea spp., Opuntia spp., Ornithopus spp., Oryza spp. (e.g. Oryza sativa, Oryza latifolia), Panicum miliaceum, Panicum virgatum, Passiflora edulis, Pastinaca sativa, Pennisetum sp., Persea spp., Petroselinum crispum, Phalaris arundinacea, Phaseolus spp., Phleum pratense, Phoenix spp., Phragmites australis, Physalis spp., Pinus spp., Pistacia vera, Pisum spp., Poa spp., Populus spp., Prosopis spp., Prunus spp., Psidium spp., Punica granatum, Pyrus communis, Quercus spp., Raphanus sativus, Rheum rhabarbarum, Ribes spp., Ricinus communis, Rubus spp., Saccharum spp., Salix sp., Sambucus spp., Secale cereale, Sesamum spp., Sinapis sp., Solanum spp. (e.g. Solanum tuberosum, Solanum integrifolium or Solanum lycopersicum), Sorghum bicolor, Spinacia spp., Syzygium spp., Tagetes spp., Tamarindus indica, Theobroma cacao, Trifolium spp., Tripsacum dactyloides, Triticosecale rimpaui, Triticum spp. (e.g. Triticum aestivum, Triticum durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum, Triticum monococcum or Triticum vulgare), Tropaeolum minus, Tropaeolum majus, Vaccinium spp., Vicia spp., Vigna spp., Viola odorata, Vitis spp., Zea mays, Zizania palustris, Ziziphus spp., amaranth, artichoke, asparagus, broccoli, Brussels sprouts, cabbage, canola, carrot, cauliflower, celery, collard greens, flax, kale, lentil, oilseed rape, okra, onion, potato, rice, soybean, strawberry, sugar beet, sugar cane, sunflower, tomato, squash, tea and algae, amongst others. According to a preferred embodiment of the present invention, the plant is a crop plant. Examples of crop plants include inter alia soybean, sunflower, canola, alfalfa, rapeseed, cotton, tomato, potato or tobacco. Further preferebly, the plant is a monocotyledonous plant, such as sugarcane. Further preferably, the plant is a cereal, such as rice, maize, wheat, barley, millet, rye, sorghum or oats.

Generally, the term “herbicide” is used herein to mean an active ingredient that kills, controls or otherwise adversely modifies the growth of plants. The preferred amount or concentration of the herbicide is an “effective amount” or “effective concentration.” By “effective amount” and “effective concentration” is intended an amount and concentration, respectively, that is sufficient to kill or inhibit the growth of a similar, wild-type, plant, plant tissue, plant cell, or host cell, but that said amount does not kill or inhibit as severely the growth of the herbicide-resistant plants, plant tissues, plant cells, and host cells of the present invention. Typically, the effective amount of a herbicide is an amount that is routinely used in agricultural production systems to kill weeds of interest. Such an amount is known to those of ordinary skill in the art. Herbicidal activity is exhibited by herbicides useful for the the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote non-selective or selective herbicidal action. Generally, the herbicide treatments can be applied PPI (Pre Plant Incorporated), PPSA (Post plarIt surface applied), PRE- or POST-emergent. Postemergent treatment typically occurs to relatively immature undesirable vegetation to achieve the maximum control of weeds.

By a “herbicide-tolerant” or “herbicide-resistant” plant, it is intended that a plant that is tolerant or resistant to at least one herbicide at a level that would normally kill, or inhibit the growth of, a normal or wildtype plant. Levels of herbicide that normally inhibit growth of a non-tolerant plant are known and readily determined by those skilled in the art. Examples include the amounts recommended by manufacturers for application. The maximum rate is an example of an amount of herbicide that would normally inhibit growth of a non-tolerant plant. For the present invention, the terms “herbicide-tolerant” and “herbicide-resistant” are used interchangeably and are intended to have an equivalent meaning and an equivalent scope. Similarly, the terms “herbicide-tolerance” and “herbicide-resistance” are used interchangeably and are intended to have an equivalent meaning and an equivalent scope. Similarly, the terms “tolerant” and “resistant” are used interchangeably and are intended to have an equivalent meaning and an equivalent scope. As used herein, in regard to an herbicidal composition useful in various embodiments hereof, terms such as herbicides, and the like, refer to those agronomically acceptable herbicide active ingredients (A.I.) recognized in the art. Similarly, terms such as fungicide, nematicide, pesticide, and the like, refer to other agronomically acceptable active ingredients recognized in the art.

When used in reference to a particular mutant enzyme or polypeptide, terms such as herbicide-tolerant and herbicide-tolerance refer to the ability of such enzyme or polypeptide to perform its physiological activity in the presence of an amount of an herbicide A.I. that would normally inactivate or inhibit the activity of the wild-type (non-mutant) version of said enzyme or polypeptide. Furthermore, the PPO activity of such a herbicide-tolerant or herbicide-resistant mutated PPO protein may be referred to herein as “herbicide-tolerant” or “herbicide-resistant” PPO activity.

As used herein, “recombinant,” when referring to nucleic acid or polypeptide, indicates that such material has been altered as a result of human application of a recombinant technique, such as by polynucleotide restriction and ligation, by polynucleotide overlap-extension, or by genomic insertion or transformation. A gene sequence open reading frame is recombinant if that nucleotide sequence has been removed from its natural context and cloned into any type of artificial nucleic acid vector. The term recombinant also can refer to an organism having a recombinant material, e.g., a plant that comprises a recombinant nucleic acid can be considered a recombinant plant.

The term “transgenic plant” refers to a plant that comprises a heterologous polynucleotide. Preferably, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. “Transgenic” is used herein to refer to any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been so altered by the presence of heterologous nucleic acid including those transgenic organisms or cells initially so altered, as well as those created by crosses or asexual propagation from the initial transgenic organism or cell. In some embodiments, a “recombinant” organism is a “transgenic” organism. The term “transgenic” as used herein is not intended to encompass the alteration of the genome (chromosomal or extra-chromosomal) by conventional plant breeding methods (e.g., crosses) or by naturally occurring events such as, e.g., self-fertilization, random cross-fertilization, non-recombinant viral infection, non-recombinant bacterial transformation, non-recombinant transposition, or spontaneous mutation.

As used herein, “mutagenized” refers to an organism or DNA thereof having alteration(s) in the biomolecular sequence of its native genetic material as compared to the sequence of the genetic material of a corresponding wild-type organism or DNA, wherein the alteration(s) in genetic material were induced and/or selected by human action. Examples of human action that can be used to produce a mutagenized organism or DNA include, but are not limited to, treatment with a chemical mutagen such as EMS and subsequent selection with herbicide(s); or by treatment of plant cells with x-rays and subsequent selection with herbicide(s). Any method known in the art can be used to induce mutations. Methods of inducing mutations can induce mutations in random positions in the genetic material or can induce mutations in specific locations in the genetic material (i.e., can be directed mutagenesis techniques), such as by use of a genoplasty technique.

As used herein, a “genetically modified organism” (GMO) is an organism whose genetic characteristics contain alteration(s) that were produced by human effort causing transfection that results in transformation of a target organism with genetic material from another or “source” organism, or with synthetic or modified-native genetic material, or an organism that is a descendant thereof that retains the inserted genetic material. The source organism can be of a different type of organism (e.g., a GMO plant can contain bacterial genetic material) or from the same type of organism (e.g., a GMO plant can contain genetic material from another plant). As used herein in regard to plants and other organisms, “recombinant,” “transgenic,” and “GMO” are considered synonyms and indicate the presence of genetic material from a different source; in contrast, “mutagenized” is used to refer to a plant or other organism, or the DNA thereof, in which no such transgenic material is present, but in which the native genetic material has become mutated so as to differ from a corresponding wild-type organism or DNA.

As used herein, “wild-type” or “corresponding wild-type plant” means the typical form of an organism or its genetic material, as it normally occurs, as distinguished from, e.g., mutagenized and/or recombinant forms. Similarly, by “control cell” or “similar, wild-type, plant, plant tissue, plant cell or host cell” is intended a plant, plant tissue, plant cell, or host cell, respectively, that lacks the herbicide-resistance characteristics and/or particular polynucleotide of the invention that are disclosed herein. The use of the term “wild-type” is not, therefore, intended to imply that a plant, plant tissue, plant cell, or other host cell lacks recombinant DNA in its genome, and/or does not possess herbicide-resistant characteristics that are different from those disclosed herein.

As used herein, “descendant” refers to any generation plant. In some embodiments, a descendant is a first, second, third, fourth, fifth, sixth, seventh, eight, ninth, or tenth generation plant.

As used herein, “progeny” refers to a first generation plant.

The term “seed” comprises seeds of all types, such as, for example, true seeds, caryopses, achenes, fruits, tubers, seedlings and similar forms. In the context of Brassica and Sinapis species, “seed” refers to true seed(s) unless otherwise specified. For example, the seed can be seed of transgenic plants or plants obtained by traditional breeding methods. Examples of traditional breeding methods can include cross-breeding, selfing, back-crossing, embryo rescue, in-crossing, out-crossing, inbreeding, selection, asexual propagation, and other traditional techniques as are known in the art.

Although exemplified with reference to specific plants or plant varieties and their hybrids, in various embodiments, the presently described methods using herbicides can be employed with a variety of commercially valuable plants. Herbicide-tolerant plant lines described as useful herein can be employed in weed control methods either directly or indirectly, i. e. either as crops for herbicide treatment or as herbicide-tolerance trait donor lines for development, to produce other varietal and/or hybrid crops containing such trait or traits. All such resulting variety or hybrids crops, containing the ancestral herbicide-tolerance trait or traits can be referred to herein as progeny or descendant of the ancestral, herbicide-tolerant line(s). Such resulting plants can be said to retain the “herbicide tolerance characteristic(s)” of the ancestral plant, i.e. meaning that they possess and express the ancestral genetic molecular components responsible for the trait.

In one aspect, the present invention provides a plant or plant part comprising a polynucleotide encoding a mutated PPO polypeptide, the expression of said polynucleotide confers to the plant or plant part tolerance to herbicides.

In a preferred embodiment, the plant has been previously produced by a process comprising recombinantly preparing a plant by introducing and over-expressing a mutated PPO transgene according to the present invention, as described in greater detail hereinfter.

In another embodiment, the polynucleotide encoding the mutated PPO polypeptide polypeptide comprises the nucleic acid sequence set forth in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, or a variant or derivative thereof.

In other embodiments, the mutated PPO polypeptide according to the present invention is a functional variant having, over the full-length of the variant, at least about 80%, illustratively, at least about 80%, 90%, 95%, 98%, 99% or more amino acid sequence identity to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129.

In another embodiment, the mutated PPO polypeptide for use according to the present invention is a functional fragment of a polypeptide having the amino acid sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129.

It is recognized that the PPO polynucleotide molecules and PPO polypeptides of the invention encompass polynucleotide molecules and polypeptides comprising a nucleotide or an amino acid sequence that is sufficiently identical to nucleotide sequence set forth in SEQ ID NOs: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, or to the amino acid sequence set forth in SEQ ID Nos: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129. The term “sufficiently identical” is used herein to refer to a first amino acid or nucleotide sequence that contains a sufficient or minimum number of identical or equivalent (e.g., with a similar side chain) amino acid residues or nucleotides to a second amino acid or nucleotide sequence such that the first and second amino acid or nucleotide sequences have a common structural domain and/or common functional activity.

Generally, “sequence identity” refers to the extent to which two optimally aligned DNA or amino acid sequences are invariant throughout a window of alignment of components, e.g., nucleotides or amino acids. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components that are shared by the two aligned sequences divided by the total number of components in reference sequence segment, i.e., the entire reference sequence or a smaller defined part of the reference sequence. “Percent identity” is the identity fraction times 100. Optimal alignment of sequences for aligning a comparison window are well known to those skilled in the art and may be conducted by tools such as the local hom*ology algorithm of Smith and Waterman, the hom*ology alignment algorithm of Needleman and Wunsch, the search for similarity method of Pearson and Lipman, and preferably by computerized implementations of these algorithms such as GAP, BESTFIT, FASTA, and TFASTA available as part of the GCG. Wisconsin Package. (Accelrys Inc. Burlington, Mass.)

By an “isolated polynucleotide”, including DNA, RNA, or a combination of these, single or double stranded, in the sense or antisense orientation or a combination of both, dsRNA or otherwise, we mean a polynucleotide which is at least partially separated from the polynucleotide sequences with which it is associated or linked in its native state. Preferably, the isolated polynucleotide is at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated. As the skilled addressee would be aware, an isolated polynucleotide can be an exogenous polynucleotide present in, for example, a transgenic organism which does not naturally comprise the polynucleotide. Furthermore, the terms “polynucleotide(s)”, “nucleic acid sequence(s)”, “nucleotide sequence(s)”, “nucleic acid(s)”, “nucleic acid molecule” are used interchangeably herein and refer to nucleotides, either ribonucleotides or deoxyribonucleotides or a combination of both, in a polymeric unbranched form of any length.

The term “mutated PPO nucleic acid” refers to a PPO nucleic acid having a sequence that is mutated from a wild-type PPO nucleic acid and that confers increased herbicide tolerance to a plant in which it is expressed. Furthermore, the term “mutated protoporphyrinogen oxidase (mutated PPO)” refers to the replacement of an amino acid of the wild-type primary sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, a derivative, a hom*ologue, an orthologue, or paralogue thereof, with another amino acid. The expression “mutated amino acid” will be used below to designate the amino acid which is replaced by another amino acid, thereby designating the site of the mutation in the primary sequence of the protein.

In a preferred embodiment, the PPO nucleotide sequence encoding a mutated PPO comprises the sequence of SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, or a variant or derivative thereof

Furthermore, it will be understood by the person skilled in the art that the PPO nucleotide sequences encompasse hom*ologues, paralogues and and orthologues of SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, as defined hereinafter.

The term “variant” with respect to a sequence (e.g., a polypeptide or nucleic acid sequence such as—for example—a transcription regulating nucleotide sequence of the invention) is intended to mean substantially similar sequences. For nucleotide sequences comprising an open reading frame, variants include those sequences that, because of the degeneracy of the genetic code, encode the identical amino acid sequence of the native protein. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis and for open reading frames, encode the native protein comprising the sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, as well as those that encode a polypeptide having amino acid substitutions relative to the native protein, e.g. the mutated PPO according to the present invention as disclosed herein. Generally, nucleotide sequence variants of the invention will have at least 30, 40, 50, 60, to 70%, e.g., preferably 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, to 79%, generally at least 80%, e.g., 81%-84%, at least 85%, e.g., 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, to 98% and 99% nucleotide “sequence identity” to the nucleotide sequence of SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130. The % identity of a polynucleotide is determined by GAP (Needleman and Wunsch, 1970) analysis (GCG program) with a gap creation penalty=5, and a gap extension penalty=0.3. Unless stated otherwise, the query sequence is at least 45 nucleotides in length, and the GAP analysis aligns the two sequences over a region of at least 45 nucleotides. Preferably, the query sequence is at least 150 nucleotides in length, and the GAP analysis aligns the two sequences over a region of at least 150 nucleotides. More preferably, the query sequence is at least 300 nucleotides in length and the GAP analysis aligns the two sequences over a region of at least 300 nucleotides. Even more preferably, the GAP analysis aligns the two sequences over their entire length.

By “substantially purified polypeptide” or “purified” a polypeptide is meant that has been separated from one or more lipids, nucleic acids, other polypeptides, or other contaminating molecules with which it is associated in its native state. It is preferred that the substantially purified polypeptide is at least 60% free, more preferably at least 75% free, and more preferably at least 90% free from other components with which it is naturally associated. As the skilled addressee will appreciate, the purified polypeptide can be a recombinantly produced polypeptide. The terms “polypeptide” and “protein” are generally used interchangeably and refer to a single polypeptide chain which may or may not be modified by addition of non-amino acid groups. It would be understood that such polypeptide chains may associate with other polypeptides or proteins or other molecules such as co-factors. The terms “proteins” and “polypeptides” as used herein also include variants, mutants, modifications, analogous and/or derivatives of the polypeptides of the invention as described herein.

The % identity of a polypeptide is determined by GAP (Needleman and Wunsch, 1970) analysis (GCG program) with a gap creation penalty=5, and a gap extension penalty=0.3. The query sequence is at least 25 amino acids in length, and the GAP analysis aligns the two sequences over a region of at least 25 amino acids. More preferably, the query sequence is at least 50 amino acids in length, and the GAP analysis aligns the two sequences over a region of at least 50 amino acids. More preferably, the query sequence is at least 100 amino acids in length and the GAP analysis aligns the two sequences over a region of at least 100 amino acids. Even more preferably, the query sequence is at least 250 amino acids in length and the GAP analysis aligns the two sequences over a region of at least 250 amino acids. Even more preferably, the GAP analysis aligns the two sequences over their entire length.

With regard to a defined polypeptide, it will be appreciated that % identity figures higher than those provided above will encompass preferred embodiments. Thus, where applicable, in light of the minimum % identity figures, it is preferred that the PPO polypeptide of the invention comprises an amino acid sequence which is at least 40%, more preferably at least 45%, more preferably at least 50%, more preferably at least 55%, more preferably at least 60%, more preferably at least 65%, more preferably at least 70%, more preferably at least 75%, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, more preferably at least 99%, more preferably at least 99.1%, more preferably at least 99.2%, more preferably at least 99.3%, more preferably at least 99.4%, more preferably at least 99.5%, more preferably at least 99.6%, more preferably at least 99.7%, more preferably at least 99.8%, and even more preferably at least 99.9% identical to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129.

By “variant” polypeptide is intended a polypeptide derived from the protein of SEQ ID NO: 2, by deletion (so-called truncation) or addition of one or more amino acids to the N-terminal and/or C-terminal end of the native protein; deletion or addition of one or more amino acids at one or more sites in the native protein; or substitution of one or more amino acids at one or more sites in the native protein. Such variants may result from, for example, genetic polymorphism or from human manipulation. Methods for such manipulations are generally known in the art.

“Derivatives” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived. Thus, functional variants and fragments of the PPO polypeptides, and nucleic acid molecules encoding them, also are within the scope of the present invention, and unless specifically described otherwise, irrespective of the origin of said polypeptide and irrespective of whether it occurs naturally. Various assays for functionality of a PPO polypeptide can be employed. For example, a functional variant or fragment of the PPO polypeptide can be assayed to determine its ability to confer herbicides detoxification. By way of illustration, a herbicides detoxification rate can be defined as a catalytic rate sufficient to provide a determinable increase in tolerance to herbicides in a plant or plant part comprising a recombinant polynucleotide encoding the variant or fragment of the PPO polypeptide, wherein the plant or plant part expresses the variant or fragment at up to about 0.5%, illustratively, about 0.05 to about 0.5%, about 0.1 to about 0.4%, and about 0.2 to about 0.3%, of the total cellular protein relative to a similarly treated control plant that does not express the variant or fragment.

In a preferred embodiment, the mutated PPO polypeptide is a functional variant or fragment of a protoporphyrinogen oxidase having the amino acid sequence set forth in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, wherein the functional variant or fragment has at least about 80% amino acid sequence identity to SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129.

In other embodiments, the functional variant or fragment further has a herbicides detoxification rate defined as a catalytic rate sufficient to provide a determinable increase in tolerance to herbicides in a plant or plant part comprising a recombinant polynucleotide encoding the variant or fragment, wherein the plant or plant part expresses the variant or fragment at up to about 0.5% of the total cellular protein to a similarly treated control plant that does not express the variant or fragment.

“hom*ologues” of a protein encompass peptides, oligopeptides, polypeptides, proteins and enzymes having amino acid substitutions, deletions and/or insertions relative to the unmodified protein in question and having similar biological and functional activity as the unmodified protein from which they are derived.

In addition, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into the nucleotide sequences of the invention thereby leading to changes in the amino acid sequence of the encoded proteins without altering the biological activity of the proteins.

Thus, for example, an isolated polynucleotide molecule encoding a mutated PPO polypeptide having an amino acid sequence that differs from that of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129 can be created by introducing one or more nucleotide substitutions, additions, or deletions into the corresponding nucleotide sequence, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleotide sequences are also encompassed by the present invention. For example, preferably, conservative amino acid substitutions may be made at one or more predicted preferably nonessential amino acid residues. A “nonessential” amino acid residue is a residue that can be altered from the wild-type sequence of a protein without altering the biological activity, whereas an “essential” amino acid residue is required for biological activity.

A deletion refers to removal of one or more amino acids from a protein.

An insertion refers to one or more amino acid residues being introduced into a predetermined site in a protein. Insertions may comprise N-terminal and/or C-terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Generally, insertions within the amino acid sequence will be smaller than N- or C-terminal fusions, of the order of about 1 to 10 residues. Examples of N- or C-terminal fusion proteins or peptides include the binding domain or activation domain of a transcriptional activator as used in the yeast two-hybrid system, phage coat proteins, (histidine)-6-tag, glutathione S-transferase-tag, protein A, maltose-binding protein, dihydrofolate reductase, Tag•100 epitope, c-myc epitope, FLAG®-epitope, lacZ, CMP (calmodulin-binding peptide), HA epitope, protein C epitope and VSV epitope.

A substitution refers to replacement of amino acids of the protein with other amino acids having similar properties (such as similar hydrophobicity, hydrophilicity, antigenicity, propensity to form or break α-helical structures or β-sheet structures). Amino acid substitutions are typically of single residues, but may be clustered depending upon functional constraints placed upon the polypeptide and may range from 1 to 10 amino acids; insertions will usually be of the order of about 1 to 10 amino acid residues. A conservative amino acid substitution is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Such substitutions would not be made for conserved amino acid residues, or for amino acid residues residing within a conserved motif. Conservative substitution tables are well known in the art (see for example Creighton (1984) Proteins. W.H. Freeman and Company (Eds).

Amino acid substitutions, deletions and/or insertions may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis and the like, or by recombinant DNA manipulation. Methods for the manipulation of DNA sequences to produce substitution, insertion or deletion variants of a protein are well known in the art. For example, techniques for making substitution mutations at predetermined sites in DNA are well known to those skilled in the art and include M13 mutagenesis, T7-Gen in vitro mutagenesis (USB, Cleveland, OH), QuickChange Site Directed mutagenesis (Stratagene, San Diego, CA), PCR-mediated site-directed mutagenesis or other site-directed mutagenesis protocols.

“Derivatives” further include peptides, oligopeptides, polypeptides which may, compared to the amino acid sequence of the naturally-occurring form of the protein, such as the protein of interest, comprise substitutions of amino acids with non-naturally occurring amino acid residues, or additions of non-naturally occurring amino acid residues. “Derivatives” of a protein also encompass peptides, oligopeptides, polypeptides which comprise naturally occurring altered (glycosylated, acylated, prenylated, phosphorylated, myristoylated, sulphated etc.) or non-naturally altered amino acid residues compared to the amino acid sequence of a naturally-occurring form of the polypeptide. A derivative may also comprise one or more non-amino acid substituents or additions compared to the amino acid sequence from which it is derived, for example a reporter molecule or other ligand, covalently or non-covalently bound to the amino acid sequence, such as a reporter molecule which is bound to facilitate its detection, and non-naturally occurring amino acid residues relative to the amino acid sequence of a naturally-occurring protein. Furthermore, “derivatives” also include fusions of the naturally-occurring form of the protein with tagging peptides such as FLAG, HIS6 or thioredoxin (for a review of tagging peptides, see Terpe, Appl. Microbiol. Biotechnol. 60, 523-533, 2003).

“Orthologues” and “paralogues” encompass evolutionary concepts used to describe the ancestral relationships of genes. Paralogues are genes within the same species that have originated through duplication of an ancestral gene; orthologues are genes from different organisms that have originated through speciation, and are also derived from a common ancestral gene.

It is well-known in the art that paralogues and orthologues may share distinct domains harboring suitable amino acid residues at given sites, such as binding pockets for particular substrates or binding motifs for interaction with other proteins.

The term “domain” refers to a set of amino acids conserved at specific positions along an alignment of sequences of evolutionarily related proteins. While amino acids at other positions can vary between hom*ologues, amino acids that are highly conserved at specific positions indicate amino acids that are likely essential in the structure, stability or function of a protein. Identified by their high degree of conservation in aligned sequences of a family of protein hom*ologues, they can be used as identifiers to determine if any polypeptide in question belongs to a previously identified polypeptide family.

The term “motif” or “consensus sequence” refers to a short conserved region in the sequence of evolutionarily related proteins. Motifs are frequently highly conserved parts of domains, but may also include only part of the domain, or be located outside of conserved domain (if all of the amino acids of the motif fall outside of a defined domain).

Specialist databases exist for the identification of domains, for example, SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95, 5857-5864; Letunic et al. (2002) Nucleic Acids Res 30, 242-244), InterPro (Mulder et al., (2003) Nucl. Acids. Res. 31, 315-318), Prosite (Bucher and Bairoch (1994), A generalized profile syntax for biomolecular sequences motifs and its function in automatic sequence interpretation. (In) ISMB-94; Proceedings 2nd International Conference on Intelligent Systems for Molecular Biology. Altman R., Brutlag D., Karp P., Lathrop R., Searls D., Eds., pp 53-61, AAAI Press, Menlo Park; Hulo et al., Nucl. Acids. Res. 32:D134-D137, (2004)), or Pfam (Bateman et al., Nucleic Acids Research 30(1): 276-280 (2002)). A set of tools for in silico analysis of protein sequences is available on the ExPASy proteomics server (Swiss Institute of Bioinformatics (Gasteiger et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res. 31:3784-3788(2003)). Domains or motifs may also be identified using routine techniques, such as by sequence alignment.

Methods for the alignment of sequences for comparison are well known in the art, such methods include GAP, BESTFIT, BLAST, FASTA and TFASTA. GAP uses the algorithm of Needleman and Wunsch ((1970) J Mol Biol 48: 443-453) to find the global (i.e. spanning the complete sequences) alignment of two sequences that maximizes the number of matches and minimizes the number of gaps. The BLAST algorithm (Altschul et al. (1990) J Mol Biol 215: 403-10) calculates percent sequence identity and performs a statistical analysis of the similarity between the two sequences. The software for performing BLAST analysis is publicly available through the National Centre for Biotechnology Information (NCBI). hom*ologues may readily be identified using, for example, the ClustalW multiple sequence alignment algorithm (version 1.83), with the default pairwise alignment parameters, and a scoring method in percentage. Global percentages of similarity and identity may also be determined using one of the methods available in the MatGAT software package (Campanella et al., BMC Bioinformatics. 2003 Jul. 10; 4:29. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences.). Minor manual editing may be performed to optimise alignment between conserved motifs, as would be apparent to a person skilled in the art. Furthermore, instead of using full-length sequences for the identification of hom*ologues, specific domains may also be used. The sequence identity values may be determined over the entire nucleic acid or amino acid sequence or over selected domains or conserved motif(s), using the programs mentioned above using the default parameters. For local alignments, the Smith-Waterman algorithm is particularly useful (Smith T F, Waterman M S (1981) J. Mol. Biol 147(1); 195-7).

The proteins of the invention may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants can be prepared by mutations in the DNA. Methods for mutagenesis and nucleotide sequence alterations are well known in the art. See, for example, Kunkel (1985) PNAS, 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Pat. No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D. C), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be preferable.

Alternatively, variant nucleotide sequences can be made by introducing mutations randomly along all or part of a coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened to identify mutants that encode proteins that retain activity. For example, following mutagenesis, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using standard assay techniques.

The inventors of the present invention have found that by substituting one or more of the amino acid residues in the non-actives sites of the PPO enzyme of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, e.g. by employing one of the above described methods to mutate the PPO encoding nucleic acids, the tolerance or resistance to particular herbicides could be remarkably increased.

Preferred substitutions of mutated PPO are those that increase the herbicide tolerance of the plant, but leave the biological activity of the PPO enzymatic activity substantially unaffected.

Accordingly, in another object of the present invention refers to a mutated PPO polypeptide, comprising the sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, a variant, derivative, orthologue, paralogue or hom*ologue thereof, the key amino acid residues of which is substituted by any other amino acid.

It will be understood by the person skilled in the art that amino acids located in a close proximity to the positions of amino acids mentioned below may also be substituted.

Thus, in another embodiment the variant of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, a variant, derivative, orthologue, paralogue or hom*ologue thereof comprises a mutated PPO, wherein an amino acid ±3, ±2 or ±1 amino acid positions from a key amino acid is substituted by any other amino acid.

Based on techniques well-known in the art, a highly characteristic sequence pattern can be developed, by means of which further of mutated PPO candidates with the desired activity may be searched.

Searching for further mutated PPO candidates by applying a suitable sequence pattern would also be encompassed by the present invention. It will be understood by a skilled reader that the present sequence pattern is not limited by the exact distances between two adjacent amino acid residues of said pattern. Each of the distances between two neighbours in the above patterns may, for example, vary independently of each other by up to ±10, ±5, ±3, ±2 or ±1 amino acid positions without substantially affecting the desired activity.

Furthermore, by applying the method of site directed mutagenesis, e.g. saturation mutagenes (see e.g. Schenk et al., Biospektrum March 2006, pages 277-279), the inventors of the present invention have identified and generated specific amino acid subsitutions and combinations thereof, which—when introduced into a plant by transforming and expressing the respective mutated PPO encoding nucleic acid—confer increased herbicide resistance or tolerance to a herbicide to said plant.

Thus, in a particularly preferred embodiment, the variant or derivative of the mutated PPO refers to a PPO polypeptide comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, a orthologue, paralogue, or hom*ologue thereof, wherein the amino acid sequence differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to the following positions of SEQ ID NO: 1 or 2: 32, 53, 57, 61, 63, 64, 65, 67, 71, 76, 82, 83, 85, 86, 87, 88, 91, 103, 104, 106, 108, 116, 119, 126, 127, 129, 139, 159, 210, 211, 224, 245, 246, 248, 249, 252, 253, 254, 255, 257, 259, 260, 262, 264, 286, 291, 305, 308, 309, 323, 335, 343, 345, 358, 372, 373, 387, 391, 392, 400, 412, 414, 415, 425, 428, 431, 433, 434, 435, 436, 447, 451, 453, 464, 466, 482 of SEQ ID NO: 1 or 2, wherein said difference refers to a substitution of the amino acid at that positions by any other amino acid.

In a particularly preferred embodiment, the variant or derivative of the mutated PPO refers to a PPO polypeptide comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, a orthologue, paralogue, or hom*ologue thereof, wherein the amino acid sequence differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to the following positions of SEQ ID NO: 1 or 2: 40, 250, 391, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534 of SEQ ID NO: 1 or 2, wherein said difference refers to a deletion or an insertion of the amino acid at that positions.

Preferably, the difference corresponding to position 391 of SEQ ID NO:1 referes to an insertion, and the difference corresponding to positions 40, 250, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534 of SEQ ID NO: 1 or 2 refers to a deletion

Preferably, said differences at these amino acid positions (corresponding to the respective positions in SEQ ID NO: 2 or 4) include, but are not limited to, one or more of the following:

the amino acid corresponding to position G32 is substituted by any other amino acid

the amino acid corresponding to position V53 is substituted by any other amino acid

the amino acid corresponding to position A57 is substituted by any other amino acid

the amino acid corresponding to position K61 is substituted by any other amino acid

the amino acid corresponding to position K63 is substituted by any other amino acid

the amino acid corresponding to position S64 is substituted by any other amino acid

the amino acid corresponding to position H65 is substituted by any other amino acid

the amino acid corresponding to position L67 is substituted by any other amino acid

the amino acid corresponding to position L71 is substituted by any other amino acid

the amino acid corresponding to position S76 is substituted by any other amino acid

the amino acid corresponding to position L82 is substituted by any other amino acid

the amino acid corresponding to position K83 is substituted by any other amino acid

the amino acid corresponding to position V85 is substituted by any other amino acid

the amino acid corresponding to position K86 is substituted by any other amino acid

the amino acid corresponding to position K87 is substituted by any other amino acid

the amino acid corresponding to position D88 is substituted by any other amino acid

the amino acid corresponding to position I91 is substituted by any other amino acid

the amino acid corresponding to position E103 is substituted by any other amino acid

the amino acid corresponding to position A104 is substituted by any other amino acid

the amino acid corresponding to position V106 is substituted by any other amino acid

the amino acid corresponding to position S108 is substituted by any other amino acid

the amino acid corresponding to position R116 is substituted by any other amino acid

the amino acid corresponding to position Q119 is substituted by any other amino acid, preferably Leu

the amino acid corresponding to position K127 is substituted by any other amino acid

the amino acid corresponding to position N126 is substituted by any other amino acid

the amino acid corresponding to position Y129 is substituted by any other amino acid

the amino acid corresponding to position L139 is substituted by any other amino acid

the amino acid corresponding to position Q159 is substituted by any other amino acid

the amino acid corresponding to position G210 is substituted by any other amino acid, preferably by Ser;

the amino acid corresponding to position G211 is substituted by any other amino acid, preferably by Asp, Asn, Thr or Ala;

the amino acid corresponding to position E224 is substituted by any other amino acid

the amino acid corresponding to position L245 is substituted by any other amino acid

the amino acid corresponding to position K248 is substituted by any other amino acid

the amino acid corresponding to position S246 is substituted by any other amino acid

the amino acid corresponding to position E249 is substituted by any other amino acid

the amino acid corresponding to position G252 is substituted by any other amino acid

the amino acid corresponding to position E253 is substituted by any other amino acid

the amino acid corresponding to position N254 is substituted by any other amino acid

the amino acid corresponding to position A255 is substituted by any other amino acid

the amino acid corresponding to position I257 is substituted by any other amino acid

the amino acid corresponding to position K259 is substituted by any other amino acid

the amino acid corresponding to position P260 is substituted by any other amino acid

the amino acid corresponding to position V262 is substituted by any other amino acid

the amino acid corresponding to position G264 is substituted by any other amino acid

the amino acid corresponding to position D286 is substituted by any other amino acid

the amino acid corresponding to position Q291 is substituted by any other amino acid

the amino acid corresponding to position P305 is substituted by any other amino acid

the amino acid corresponding to position G308 is substituted by any other amino acid

the amino acid corresponding to position N309 is substituted by any other amino acid

the amino acid corresponding to position Q323 is substituted by any other amino acid

the amino acid corresponding to position R335 is substituted by any other amino acid

the amino acid corresponding to position M343 is substituted by any other amino acid

the amino acid corresponding to position F345 is substituted by any other amino acid

the amino acid corresponding to position T358 is substituted by any other amino acid

the amino acid corresponding to position D372 is substituted by any other amino acid

the amino acid corresponding to position K373 is substituted by any other amino acid

the amino acid corresponding to position S387 is substituted by any other amino acid, preferably Leu

the amino acid corresponding to position H391 is substituted by any other amino acid

the amino acid corresponding to position N392 is substituted by any other amino acid

the amino acid corresponding to position L400 is substituted by any other amino acid

the amino acid corresponding to position S412 is substituted by any other amino acid, preferably by Asn;

the amino acid corresponding to position M414 is substituted by any other amino acid

the amino acid corresponding to position C415 is substituted by any other amino acid

the amino acid corresponding to position R425 is substituted by any other amino acid

the amino acid corresponding to position K428 is substituted by any other amino acid

the amino acid corresponding to position N431 is substituted by any other amino acid

the amino acid corresponding to position S433 is substituted by any other amino acid

the amino acid corresponding to position M434 is substituted by any other amino acid

the amino acid corresponding to position D435 is substituted by any other amino acid

the amino acid corresponding to position E436 is substituted by any other amino acid

the amino acid corresponding to position Q447 is substituted by any other amino acid

the amino acid corresponding to position T451 is substituted by any other amino acid

the amino acid corresponding to position D453 is substituted by any other amino acid

the amino acid corresponding to position S464 is substituted by any other amino acid

the amino acid corresponding to position Q466 is substituted by any other amino acid

the amino acid corresponding to position D482 is substituted by any other amino acid

The corresponding residues in other species are shown in the following table:

SEQ IDPos 1Pos 2Pos 3Pos 4Pos 5Pos 6Pos 7Pos 8Pos 9Pos 10
 1G32V53A57K61K63S64H65L67L71S76
 2G32V53A57K61K63S64H65L67L71S76
 3G32V53A57K61K63S64H65L67L71S76
 4G32V53A57K61K63S64H65L67L71S76
 5G32V53A57K61K63S64H65L67L71S76
 6G2V23A27K31K33S34H35L37L41S46
 7V30V52A56K60K62S63N64L66L70S75
 8K4V25A29K33K35L36H37V39L43E48
 9S2V24A28K32K34S35H36L38V42E47
 10N6V23A27K31K33S34H35L37M41G46
 11T6V23A27K31K33S34H35L37V41G46
 12L4V21A25K29K31S32H33F35V39G44
 13K6V23A27K31K33S34H35L37V41G46
 14Q6V23A27K31K33S34H35F37V41G46
 15G6V23A27K31K33S34N35V37V41E46
 16G11V23A27K31K33S34N35V37V41E46
 17K6V23A27K31K33S34H35L37V41G46
 18A5V23A27K31K33S34H35F37V41E46
 19V18A22K26K28S29H30F32V36E41
 20G6V23A27K31K33I34H35L37V41G46
 21G6V20A24K28K30V31H32L34V38G43
 22G4V26A30K34K36S37R38L40V44G49
 23G7V28A32K36K38S39R40L42V46E51
 24G4V26A30K34K36S37R38L40V44G49
 25G50V72A76K80K82S83R84L86V90G95
 26A3K7K9L10H11L13V17E22
 27G34V53A57R61R63K64S65V67V71D76
 28G36V55V59R63R65K66S67V69V73D78
 29G4V26A30K34K36S37R38L40V44G49
 30G36V55A59R63R65Q66S67V69V73D78
 31G36V55A59R63R65Q66S67V69V73D78
 32G8I31A35K39K41S42N43F45V49G54
 33A41I69Q73A77R86S87S88P90V94D99
 34A4V25A29K33K35S36N37V39V43G48
 35A69V90A94K98K100S101K102L104V108G113
 36L36V59V63R67R69K70S71V73V77D82
 37V20A24R28R30K31R32V34V38D43
 38H4I25A29R33K35S36Q37L39I43G48
 39A2V23A27K31K33I34H35L37V41G46
 40V20A24R28R30K31R32V34V38D43
 41V20A24R28R30K31R32V34V38D43
 42A7V28R29K31S32R33L35V39G44
 43M1A22A26R30R32A33A34V36V40N45
 44M1A22A26R30R32A33A34V36V40N45
 45G32V53A57K61K63S64H65L67L71S76
 46G32V53A57K61K63S64H65L67L71S76
 47
 48
 49V14S18K22K24L25N26L28V32G37
 50
 51I11T15E19H21R22R23L25V29D34
 52I11A15R19Q21E22H23H25L29G34
 53I11A15R19Q21E22H23H25V29G34
 54
 55I11A15E19H21R22R23L25V29D34
 56I10T14Y18K20Q21Q22V24V28N33
 57S4I27T31R35T37Q38L39H41V45D50
 58I15T19E23L25K26L27H29V33S38
 59I12T16L20S22K23R24F26130S35
 60I12C16E20K22K23S24F26V30E35
 61I11T15Q19Q21Q22Q23H25V29G34
 62A2V23A27K31K33L34H35L37V41E46
 63I12S16W20V22K23K24Y26I30N35
 64M1I22A26H30S32R33M34K36V40S45
 65P16S20R24L26H27P31L33L39G44
 66V12S16H20Q22Q23A24H26V30K35
 67I12S16F20K22R23A24A26V30E35
 68I11A15Q19Q21R22K23K25V29P34
 69I13S17T21F23K24R25L27V31A36
 70I10T14R18A20R21E22H24L28P33
 71V12T16R20K22S23H24L26L30G35
 72P8I29T33R37A39R40E41H43L47P52
 73I14A18T22H24K25R26Y28V32N37
 74V15A19T23K25N26R27V29L33G38
 75V15A19T23K25N26R27V29L33G38
 76L13S17S21E23N24K25N27I31L36
 77I15A19T23Y25K26R27Y29V33N38
 78I10S14Y18K20K21G22A24V28K33
 79V11S15Y19E21K22F23G25I32N37
 80I14S18S22N24R25S28R30V37N42
 81I15A19T23K25N26R27V29L33G38
 82I11T15L19Q21K22Q23Q25V29K34
 83L13S17S21E23N24K25N27I31L36
 84I20T24R28Q30Q31R36G38L45S50
 85I10V14Q18Q20K21A22V24L28T33
 86I10S14Y18Q20R21Q22V24L28S33
 87I15A19H23K25L26A27R29L33D38
 88L14T18H22R24H25K26Q28V32E37
 89I9S13H17Q19K20L21K23L27D32
 90I11A15E19R21N22I29L31L35E40
 91I12T16R20Q22Q23S31Q33L37S42
 92I11S15A19H21Q22D23R25L29E34
 93I17S21H25Q27E28Q35V37L41P46
 94I11A15L19R21E22M29L31I35D40
 95I11A15F19R21K22Q23W25L29A34
 96L13T17Y21R23R24K25Q27V31D36
 97V10S14Y18K20R21G22A24L28N33
 98G41I65C69A73V75T76A81K83V87D92
 99N4V25A29K33K35S36K37V39V43G48
100S47I68C72A76A78T79V84S86V90D95
101A2V23A27K31K33S34Q35L37V41G46
102A45I67C71A75S77T78H80G82V86E91
103T6V27A31K35K37L38H39I41V45E50
104I94C98A102S104T105L110T112V116D121
105S36I60C64A68A70T71G74T76V80A85
106M1V22V26R30R32K33S34V36V40D45
107S47I68C72A76A78T79V84S86V90D95
108A64I89C93A97C99T100L105P107V111D116
109T38I59C63A67A69T70G73G75V79D84
110L47V67V71M75R77K78S79V81V85D90
111T39I60C64A68A70T71G74S76V80D85
112V20A24K28K30V31H32L34V38G43
113T54I75C79A83A85T86G89S91V95D100
114S47I68C72A76A78T79V84S86V90D95
115A2V23A27K31K33S34Q35L37V41G46
116A64I89C93A97C99T100L105P107V111D116
117S3V24A28K32K34S35K36V38V42G47
129Y32I62V66R70S72K73S74V76V80D85
SEQ IDPos 11Pos 12Pos 13Pos 14Pos 15Pos 16Pos 17Pos 18Pos 19Pos 20
 1L82K83V85K86K87D88I91E103A104V106
 2L82K83V85K86K87D88I91E103A104V106
 3L82K83V85K86K87D88I91E103A104V106
 4L82K83V85K86K87D88I91E103A104V106
 5L82K83V85K86K87D88I91E103A104V106
 6L52K53V55K56K57D58I61E73A74V76
 7L81K82V84V85K86D87I90D102E103V105
 8L54R55V57S58Q59H60V63E75I76V78
 9L53R54V56N57H58D59I62E74M75V77
 10L52R53V55S56Q57E58I61E73I74V76
 11L52R53V55S56Q57D58I61E73I74V76
 12L50R51V53S54H55D56I59E71K72V74
 13L52R53V55S56R57D58V61E73I74V76
 14L52R53V55S56Y57N58I61E73T74V76
 15L52R53I55S56K57D58I61E73M74V76
 16L52R53I55S56K57D58I61E73M74V76
 17L52R53V55S56R57D58V61E73A74V76
 18L52R53V55S56Y57K58I61E73P74V76
 19L47R48V50S51Y52K53I56E68P69V71
 20L52R53V55S56Q57D58I61E73G74V76
 21L49R50L52S53Q54D55I58E70G71V73
 22L55R56V58M59Q60N61I64E76P77V79
 23L57T58V60M61Q62N63I66E78P79V81
 24L55R56V58M59Q60N61I64E76P77V79
 25L101R102V104M105Q106N107I110E122P123V125
 26L28R29V31S32Q33D34I37E49A50V52
 27I82R83N85S86E87A88L91E103L104V106
 28I84R85N87S88E89G90L93E105L106A108
 29L55R56V58M59Q60N61I64E76P77V79
 30I84R85N87S88E89G90V93E105W106A108
 31I84R85N87S88E89G90V93E105W106A108
 32I60R61G63S64Q65E66I69V81A83
 33I105T106V108E109R110D111L114D126A127L129
 34L54R55V57S58H59H60V63E75V76V78
 35L119R120V122M123H124N125I128E140P141V143
 36I88R89N91S92D93S94L97A109L110A112
 37I49R50N52S53E54G55I58E70L71A73
 38I54K55F57A58Q59N60I63E75P76V78
 39L52R53L55S56Q57D58I61E73G74V76
 40I49R50N52S53E54G55I58E70L71A73
 41I49R50N52S53E54G55I58E70L71A73
 42L50R51V53M54H55K56I59E71P72V74
 43L51K52V54S55E56N57I60D72P73I75
 44L51K52V54S55E56N57I60D72P73I75
 45L82K83V85K86K87D88I91E103A104V106
 46L82K83V85K86K87D88I91E103A104V106
 47
 48A5L6A8
 49I43R44S46S47Q48D49I52E64E65V67
 50
 51I40Q41E43R44I45D46L49S61G62F64
 52I40R41E43S44S45E46L49A61A62L64
 53I40R41E43S44S45E46L49A61A62L64
 54
 55I40Q41E43R44I45D46L49S61G62F64
 56V39I40E42K43K44D45L48S60Q61L63
 57I56K57E59E60V61D62L65E77L78V80
 58I44E45I47R48Q49N50L53S65P66I68
 59I41E42I44K45E46N47L50T62P63I65
 60I41G42T44A45R46D47R50S62Q63T65
 61I40R41E43R44T45D47L50T62P63V65
 62P52R53V55S56Q57D58I61E73A74A76
 63M41I42R44R45L46D47L50T62P63I65
 64V51G52I54E55E56D57L60T71P72M74
 65V50T51A53C54D55A56C59H71P72V74
 66I41Q42I44R45E46D47L50D62K63I65
 67M41R42R44R45F46K47L50T62P63F65
 68I40Q41I43L44Q45D46L49S61L62I64
 69M42R43I45V46T47E49V52D64P65M67
 70I39R40E42R43D44G45L48K60P61L63
 71I41R42I44A45Y46G47I50E62M63V65
 72I58R59E61R62D63G64L67K79P80L82
 73I43Q44I46T47T48E50I53D65A66L68
 74I44R45V47R48E49D50L53E66D67I69
 75I44R45V47R48E49D50L53E66D67I69
 76L42Q43I45K46S47E48L51T63K64T66
 77I44H45I47T48T49E51T54D66V67L69
 78M39K40I42H43E44D45I48K60P61T63
 79M43L44V46Q47K48D49I52K64P65T67
 80I48T49G51R52A53D54L57T68P69L71
 81V44R45V47R48E49E50L53D66D67I69
 82I40S41F43R44E45E46L49D61P62V64
 83L42Q43I45K46S47E48L51T63K64T66
 84I56S57Q59S60K61D62R65T76P77L79
 85L39R40V42S43H44D46L49S60D61L63
 86M39R40L42R43K44N45T48N59E60L62
 87I44R45L47S48D49S50R53E66E67L69
 88M43Q44E46D47F48D49I52Y64P65V67
 89I38Q39V41K42K43E44L47D58S59I61
 90I46W47I49K50E51E52L55K67P68T70
 91I48S49Q51S52K53D54R57V68P69L71
 92I40T41G43K44A45G46L49T60P61L63
 93I52G53I55S56Q57D58R61K73P74A76
 94I46R47I49K50E51D52L55K67P68T70
 95L40Q41R43Q44E45E46L49G61H62V64
 96M42Q43E45E46V47D48V51Y63P64V66
 97A39R40Y42Y43E44K45I48K60P61T63
 98I98I99R101E102E103Q104L107S118D119M121
 99L54R55V57M58H59N60I63E75P76V78
100I101T102V104E105R106D107L110S121D122I124
101L52R53V55S56R57E58I61E73I74V76
102I97S98V100E101R102D103L106S117D118M120
103L56R57I59S60Q61N62I65E77P78V80
104I127T128K130E131D132D133I136S147D148V150
105I91T92V94E95R96E99L102S113D114V116
106I51R52N54S55D56G57L60A72L73A75
107I101T102V104E105R106D107L110S121D122I124
108I122V123V125E126A127D128I131S142D143V145
109I90T91V93E94R95E98L101S112D113V115
110I96R97N99S100D101G102L105A117L118A120
111I91T92V94E95R96E99L102S113D114V116
112L49R50L52S53Q54D55I58E70G71V73
113I106T107V109E110R111E114L117S128D129V131
114I101T102V104E105R106D107L110S121D122I124
115L52R53V55S56R57D58I61E73I74V76
116I122V123V125E126A127D128I131S142D143V145
117L53R54V56M57H58N59I62E74P75V77
129I91R92N94S95D96S97L100A112L113A115
SEQ IDPos 21Pos 22Pos 23Pos 24Pos 25Pos 26Pos 27Pos 28Pos 29Pos 30
 1S108R116Q119N126K127Y129L139Q159G210G211
 2S108R116Q119N126K127Y129L139Q159G210G211
 3S108R116Q119N126K127Y129L139Q159G210
 4S108R116Q119N126K127Y129L139Q159G210
 5S108R116Q119N126K127Y129L139Q159G210G211
 6S78R86Q89N96K97Y99L109Q129G180G181
 7S107R115L118N125K126Y128L138Q158G209G210
 8S80R88Q91N98K99Y101L111Q131G182G183
 9S79R87Q90N97K98Y100I110Q130A181G182
 10S78R86Q89K96K97Y99I109Q129A180G181
 11G78086Q89H96K97Y99V109H129A180A181
 12T76R84Q87N94K95Y97I107Q127A175G176
 13G78H86Q89H96K97Y99V109Q129A180A181
 14T78R86Q89N96K97Y99L109Q129A177G178
 15G78R86Q89Y96K97Y99I109Q129A180A181
 16G78R86Q89Y96K97Y99I109Q129A180A181
 17S78Q86Q89H96K97Y99V109R129A180A181
 18C78R86Q89N96K97Y99V109Q129A180G181
 19C73R81Q84N91K92Y94V104Q124A175G176
 20F78R86Q89N96K97Y99L109Q129G178G179
 21F75R83Q86N93K94Y96I106Q126G175G176
 22S81R89Q92K99K100Y102L112Q132A182A183
 23S83R91Q94K101K102Y104L114Q134A186A187
 24S81R89Q92K99K100Y102L112Q132A182A183
 25S127R135Q138K145K146Y148L158Q178A228A229
 26S54R62Q65H72K73Y75I85Q105G151G152
 27R108Q116Q119H126K127Y129I139A159A213G214
 28R110Q118Q121H128K129Y131I141A161A215G216
 29S81R89Q92K99K100Y102A152A153
 30R110Q118Q121H128K129Y131I141A161A215G216
 31R110Q118Q121H128K129Y131I141A161A215G216
 32E85R93Q96S103K104Y106I116R136G188G189
 33M131K138L141A148P149F151V161R181A226G227
 34S80R88Q91N98K99Y101I111Q131A182G183
 35T145R153Q156K163K164Y166I176E196A248A249
 36R114Q122Q125H132K133Y135I145K165A219G220
 37R75Q83Q86H93K94Y96I106K126G179G180
 38K80R88Q91S98K99Y101L111N131G186A187
 39F78R86Q89N96K97Y99I109Q129G178G179
 40R75Q83Q86H93K94Y96I106K126G190G191
 41R75Q83Q86H93K94Y96I106K126G190G191
 42S76R84Q87K94K95Y97I107Q127A179A180
 43R77R85Q88K95K96Y98L108K128G175S176
 44R77R85Q88K95K96Y98L108K128G175S176
 45S108R116Q119N126K127Y129L139Q159G210G211
 46S108R116Q119N126K127Y129L139Q159G210
 47A13A67G68
 48R10E18L21H28K29Y31K42A96G97
 49F69R77Q80Q87K88Y90L100Q120G168G169
 50
 51E66E74C77A85N86F88L98R118A162G163
 52T66H74R77D85T86Y88L98R118A161G162
 53T66H74R77D85T86Y88L98R118A161G162
 54
 55E66E74C77A85N86F88L98R118A162G163
 56Q65Q73K76N84K85Y87L97Q117A160G161
 57K82N90R93K101N102Y104A114K134A178G179
 58A70D78K81K89N90Y92M102N122A166G167
 59Q67K75L78N86K87Y89L99R119A163G164
 60D67K75I78K86K87F89V99R119G163A164
 61R67E75R78A85T86F89L99R119A163G164
 62S78R86Q89H96K97Y99I109Q129G175G176
 63K67S75M78A85S86Y89L99R119A163G164
 64A76V84I87A94K95F98L108H128A170G171
 65D76K85M88A95K96Y99L109H129S176G177
 66A67D75I78S85K86F89L99R119A163G164
 67E67A75R78A85R86Y89L99R119A161G162
 68D66E75I78A85Q86Y89V99R119A163G164
 69A69R77L80G87K88Y91I101R121S164G165
 70A65E73R76A83K84F87A97R117A161G162
 71R67R75Q78N85K86F88I98R118A173A174
 72A84E92R95A102K103F106A116R136A180G181
 73Q70R78I81S88K89F92I102R122A166G167
 74T71R79I82S89K90Y93V103D123A167S168
 75T71R79I82S89K90Y93V103D123A167S168
 76D68L76A79S86S87F90L100R120A165A166
 77Q71R79I82G89R90Y93I103R123A167G168
 78N65E73L76A83R84F87L97R117A161G162
 79D69E77L80A87R88F91L101R121A165G166
 80G73K81L84L91P92Y94V104R124A176G177
 81A71R79I82S89K90Y93V103D123A167S168
 82T66R74L77A84S85Y88V98G118A164G165
 83D68L76A79S86S87F90L100R120A165A166
 84N81T89L92L99P100Y102V112R132A177G178
 85E65V73I76S83K84Y87L97N117A161G162
 86Q64E72L75N82N83Y86V96R116G159G160
 87K71A79I82G89K90F93L103R123A172S173
 88E69K77L80A87K88L91L101R121A164G165
 89D63E71M74S81K82Y85L95S115A158G159
 90D72S80L83A90R91F94L104R124A168G169
 91N73A81L84L91P92Y94V104R124A169G170
 92K65R73L76L83P84F86V96R116A168G169
 93E78E86L89Y96R97L100V110R138T187S188
 94D72D80L83A90R91F94L104R124A170G171
 95E66E74I77A84K85Y88V97R117A162G163
 96E68D76L79A86K87L90L100R120A163G164
 97E65E73L76A83R84F87L97R117A160G161
 98T123K131L134A141P142F144V154R174A219G220
 99S80R88Q91K110K111Y113I123Q143A195A196
100T126K134L137A144P145F147V157R177A222G223
101S78Q86E89N96K97Y99I109Q129A180G181
102T122K130L133A140P141F143V153R173A218G219
103R82R90Q93H100K101Y103V1130133G179G180
104T152K160L163A170P171F173V183R203A248G249
105T118K126L129A136P137F139V149R169A214G215
106R77E85L88H95K96Y98I108K128A182G183
107T126K134L137A144P145F147V157R177A222G223
108T147K155L158A165P166F168V178R198A243G244
109T117K125L128A135P136F138V148R168A213G214
110R122Q130L133H140K141Y143I153K173A227G228
111T118K126L129A136P137F139V149R169A214G215
112F75R83Q86N93K94Y96I106Q126G175G176
113T133K141L144A151P152F154V164R184A229G230
114T126K134X137A144P145F147V157R177A222G223
115S78Q86Q89N96K97Y99I109Q129A180G181
116T147K155L158A165P166F168V178R198A243G244
117S79R87Q90K97K98Y100I110Q130A182A183
129R117E125L128H135K136Y138I148K168A222G223
SEQ IDPos 31Pos 32Pos 33Pos 34Pos 35Pos 36Pos 37Pos 38Pos 39Pos 40
 1E224L245S246K248E249G252E253N254A255I257
 2E224L245S246K248E249G252E253N254A255I257
 3E223L244S245K247E248G251E252N253A254I256
 4E223L244S245K247E248G251E252N253A254I256
 5D224L245S246K248E249G252G253E254A256I258
 6E194L215S216K218E219G222G223G224A226I228
 7E223S244S245K247E248G251E252K253S255N257
 8E196S217A218R220E221G224E225T226S229E231
 9E195S216T217R219G220G223E224T225S228V230
 10E194S215A216R218E219G222E223R224T226E228
 11E194F215A216R218E219G222E223N224A227R229
 12D189S210A211K213G214G217E218T219S222E224
 13E194F215G216K218D219G222E223T224V227R229
 14E191S212S213K215E216G219D220T221S224E226
 15E194S215A216K218E219A222E223A224S227E229
 16E194S215A216K218E219A222E223A224S227E229
 17E194F215G216R218D219G222E223T224A227R229
 18E194S215T216K218E219G222V223R224T227G229
 19E189S210T211K213E214G217V218R219T222G224
 20E192S213P214N216E217G220G221P222T225A227
 21D189S210P211K213E214G217G218P219T222I224
 22D196A217A218G220G221R224D225T226S229G231
 23D200A221A222G224G225G228E229A230S233G235
 24D196A214A215G217G218R221D222T223S226G228
 25D242A260A261G263G264R267D268T269S272G274
 26E165S186S187G189G190K193P194G196
 27A227T248A249G251D252K255T256G257L260G262
 28A229T250A251G253D254K257T258R259S262A264
 29D166A187A188G190G191R194D195T196S199G201
 30A229A250A251G253D254K257T258R259S262G264
 31A229A250A251G253D254K257T258R259S262G264
 32E202L223D224R226K227T231E232R233A234V236
 33K240E261R262K264N265P269R270D271P272L274
 34D196S217A218K220E221K226K227G228S229E231
 35D283A304A305
 36G233T254A255G257D258A263D264T265S266G268
 37A193S214T215G217D218G223G224A225S226G228
 38E200S221R222K224A225A229K230H231V232H234
 39E192S213P214K216E217P222P223K224T225V227
 40A204S225T226G228D229G234G235A236S237G239
 41A204S225T226G228D229G234G235A236S237G239
 42D193A214A215G217G218T223R224T225S226G228
 43E189S210K211K213K214S227D228F229P230R232
 44E189S210K211K213K214S227D228F229P230R232
 45E224
 46E223
 47A81A102A103G105D106R111H112D113S114G116
 48G110T131A132G134D135G140G141A142S143G145
 49D182S203A204R206G207N212K213G214S215T217
 50S2S3G5E6H11E12A13T14R16
 51K176K197Q198Y200H201
 52R175T196S197D199G200
 53R175T196S197D199G200
 54
 55K176K1970198Y200H201
 56K174E195R196K198R199
 57K192A213R214A216R217
 58K180E201R202K204R205
 59K177E198R199K201R202
 60P177E198K199A201A202
 61R177T198G199T201D202S205T206A207T208R210
 62
 63K177E198R199Q201R202E205S206K207Q208A210
 64K184A205A206A208N209P212V213T214L215A217
 65K190K211T212P214D215Y218K219P220Y221G223
 66K177D198Q199N201S202S205K206H207K208Q210
 67R175E196R197R199R200A203P204K205I206A208
 68K177A198A199A201N202P205K206A207K208Y210
 69S178A199K200A202A203K206K207A208K209I211
 70L175A196R197A199T200A203G204P205A206K208
 71
 72L194A215R216A218T219A222G223P224A225K227
 73S180P201K202Q204V205P208K209M210R211R213
 74L181K202R203K205R206G209S210S211P212G214
 75L181K202R203K205R206G209S210S211P212G214
 76S179Q200P201E203K204K207S208
 77S181Q202K203L205I206P209K210M211R212R214
 78A175E196A197K199S200K203S204G205P206G208
 79A179E200K201D203A204G207P208G209
 80R190N211K212A214P215T218P219D220P2211223
 81L181K202R203K205R206G209S210A211P212G214
 82L178K199Q200G204T205A206Y207K209
 83S179Q200P201E203K204K207S208
 84R191Q212R213Q215P216A219A220I221Q222P224
 85K175G196A197R199R200
 86E173R194G195
 87R186Q207K208A210
 88K178A199P200K201S202R204
 89A172N193T194
 90R182K203K204E207A208G211K212A213V214S216
 91R183S204R205H216Q217A220N221S222P223Q225
 92R182Q203R204Q206Q207P210T211D212P213L215
 93R201Q222T223K224S225A226A228
 94R184K205K206E209I210G213K214Q215V216S218
 95R176K197K198S199P200T202
 96K177Q198P199K200T201R203
 97T174E195A196K197G200A201K202S203G205
 98K233A254K255A258P259T262R263D264P265L267
 99D209A230A231K235N236T239K240S241S242G244
100R236E257R258T261P262P265R266D267P268L270
101E194S215A216T219N220E223T224K225N226V228
102K232A253K254S257T258P261R262D263P264L266
103E193S214S215R216K219K220S221P222G224
104R262E283K284K287P288P291R292D293P294L296
105K228D249R250N253P254P257R258D259P260L262
106A196T217A218S222T223G226S227A228V229G231
107R236E257R258T261P262P265R266D267P268L270
108K257E278R279N282P283P286R287D288Q289L291
109K227D248K249N252P253P256R257D258P259L261
110G241T262A263S267A268G271G272A273S274G276
111K228D249K250N253P254P257R258D259P260L262
112D189S210P211K215K216P219P220R221T2221224
113K243D264K265N268P269P272R273D274P275L277
114R236E257R258T261P262P265R266D267P268L270
115G194S215A216T219N220E223T224K225N226V228
116K257E278R279N282P283P286R287D288Q289L291
117D196A217A218K222N223T226K227S228S229G231
129G236T257A258G260D261G264S265A266V267G269
SEQ IDPos 41Pos 42 Pos 43Pos 44Pos 45Pos 46Pos 47Pos 48Pos 49Pos 50
 1K259P260V262G264D286Q291P305G308N309Q323
 2K259P260V262G264D286Q291P305G308N309Q323
 3K258P259V261G263D285Q290P304G307N308Q322
 4K258P259V261G263D285Q290P304G307N308Q322
 5K260P261V263G265D287Q292P306G309N310Q324
 6K230P231V233G235D257Q262P276G279N280Q294
 7K259P260V262G264D286Q291L305E308N309Q323
 8K233K234Q236G238D260K265S279E282N283K297
 9K232K233Q235G237D259E264S278E281N282Q296
 10R230K231L233G235D257K262S276E279N280Q294
 11N231K232K234G236D258N263S277Q280N281
 12G226K227Q229G231D253N258S272E275N276Q290
 13N231K232Q234G236D258N263S277Q280N281
 14G228K229Q231G233H255N260S274E277N278Q292
 15K231H232Q234G236D258K263S277E280N281Q294
 16K231H232Q234G236D258K263S277E280N281Q294
 17S231K232Q234G236D258N263S277E280N281
 18S231K232Q234G236G258R263Y276Q279N280L294
 19S226K227R229G231G253R258Y271Q274N275L289
 20K229K230Q232G234D256N261S275D278S279E293
 21K226K227Q229G231D253N258S272D275S276E290
 22K233K234S236G238D260D265Q279E280N281Q295
 23K237R238S240R242D264D269Q283E284N285Q299
 24K230K231S233G235D257D262Q276E277N278Q292
 25K276K277S279G281D303D308Q322E323N324Q338
 26S198K199R201G203H225Q230A244G246N247Q261
 27R264R265R267A269D291G296P310G313G314D328
 28R266R267R269V271D293G298P312G315G316D330
 29K203K204S206G208D230D235Q249E250N251Q265
 30R266R267R269V271D293G298P312G315R316D330
 31R266R267R269V271D293G298P312G315R316D330
 32K238R239P241G243E265N270P284D287S288S307
 33T276P277G279T281D302S307G319G320V334
 34K233K234Q236G238D260E265S279E282N283S299
 35D322D327Q341E342N343L359
 36G270R271K273A275G297G302S316D319G320Q339
 37G230R231K233V235G257G262S276G279G280Q299
 38Q236K237Q239G241E263H268P282N285N286Q305
 39K229K230Q232G234D256N261S275D278S279E295
 40G241R242K244V246G268G273S287G290G291Q310
 41G241R242K244V246G268G273S287G290G291Q310
 42K230K231S233G235D257D262Q276E277N278L294
 43R234P235R237G239E261N266P280Q283S284K302
 44R234P235R237G239E261N266P280Q283S284K302
 45
 46
 47R118R119R121V123D145G150P164G167R168Q187
 48G147R148K150A152S174G179S193D196G197A216
 49E219R220K222K224N246R251S265D268S269T286
 50P18K19Q21G23E45H50D64S67N68Q87
 51R205S207H229N234N246P247R261
 52P203D204P206G208D229N234T245A246R261
 53P203D204P206G208D229N234T245A246R261
 54
 55R205S207H229N234N246P247R261
 56A203K204R206K208E229N234P242K245G246C260
 57R221G223G245G250V257D260K261Q275
 58S209K210K212K214D235S240E251K252E262
 59S206K207S209R211D232S237E248G2491263
 60F205K207V209D230G235D246G247E261
 61R211A233E237G249T250
 62
 63K211N233S237K249Q250I264
 64K218K220S242D250G262G263T276
 65K224L226A228P252H260G272A273G280
 66K211R213G235E240K253R254G269
 67R209T231A235A246A247L261
 68P232G236D247M248K258
 69P213K214R216V218Q240N245T256G257I271
 70R210P211R213R215G237G242A253G256A257G272
 71
 72R229P230R232R234G256G261A272G275A276G291
 73G235E240S251W252I267
 74D236N240E251G252M266
 75D236N240E251G252M266
 76R209P231G235V247Q248E263
 77G236G241G251T252I267
 78G210V212S234E238K249G250E264
 79V211E233G237G248K249E263
 80K225T226P228E230R252N256Q268T269E284
 81D236N240E251G252M266
 82R210R232G236D247H248G262
 83R209P231G235V247Q248E263
 84P225R227Q229S251G255E266L267A282
 85R201R226G238G239F252
 86F197R199I219D224K236E250
 87A212P213A216E218D239N244F257I270
 88K206R207T209E211D233G238K250I260
 89R196L198N222T244
 90A218G219G221V223A245G250P263I273
 91P227P228R230Q232S253G258R272G274V293
 92T217V218R220E222E243N248T261V275
 93G230A231Y233L235T257E263Q289
 94A220G221G223V225D247G252L275
 95K204T205D227N232W245W254
 96K205R206T208A210E232N237W250I259
 97A207G208G210V212E233E238K250E264
 98K269P270G272T274D295S300E313V327
 99K246K247S249G251E273D278E292N294L310
100K272P273G275T277S298S303G316L330
101R230K231L233G235D257K262S276E279N280S296
102T268P269G271T273S294S299G312L326
103S226K227R229G231H253Q258T272G274N275Q291
104K298P299G301T303S324S329E342V356
105T264P265G267T269S290S295G308V322
106G233R234K236V238G260A265S279N282G283Q302
107K272P273G275T277S298S303G316L330
108K293P294G296T298S319S324E337V351
109A263P264G266T268S289S294G307V321
110G278R279K281A283T305G310S324D327G328Q347
111A264P265G267T269S290S295G308V322
112K226K227Q229G231D253N258S272D275S276E292
113A279P280G282T284S305S310G323V337
114K272P273G275T277S298S303G316L330
115R230K231L233G235D257K262S276E279N280S296
116K293P294G296T298S319S324E337V351
117K233K234S236G238D260D265Q279N281L297
129G271R272K274A276G298G303S317D320G321H340
SEQ IDPos 51Pos 52Pos 53Pos 54Pos 55Pos 56Pos 57Pos 58Pos 59Pos 60Pos 61Pos 62Pos 63
 1R335M343F345T358D372K373S387H391N392L400S412M414C415
 2R335M343F345T358D372K373S387H391N392L400S412M414C415
 3R334M342F344T357D371K372S386H390N391L399S411M413C414
 4R334M342F344T357D371K372S386H390N391L399S411M413C414
 5R336M344F346T359D373K374S388H392N393L401S413M415C416
 6R306M314F316S329D343K344S358H362N363L371S383M385C386
 7N335M343V345S358T372N373S387H391N392L400S412V414Y415
 8C311M319K321S334E348N349S363Q367N368L376N388L390Y391
 9C310T318N320S333D347N348S362Q366N367L375N387L389Y390
 10C308M316G318S331E345N346S360Q364N365L373N385L387Y388
 11Y305T313R315S328E342N343S357K361N362L370S382L384Y385
 12C304T312R314V327E341N342S356K360N361L369S381L383Y384
 13G305K313K315T328E342N343S357Q361N362L370S382M384H385
 14C306T314R316N329E343N344S358E362N363L371S383Q385Y386
 15C308T316G3181331E345N346S360Q364N365L373K385L387F388
 16C308T316G3181331E345N346S360Q364N365L373K385L387F388
 17G305T313R315T328E342N343S357Q361N362L370S382L384H385
 18C306M314G316A329E343S344S358Q362N363L371N383E385Y386
 19C301M309G311A324E338S339S353Q357N358L366N378E380Y381
 20C307A315R317D330E344N345S359Q363H364L372N384V386Y387
 21C304A312R314D327E341S342S356K360H361L369N381V383Y384
 22C309M317G319N332E346K347S361K365H366L374S386V388H389
 23C313T321G323N336E350K351S365K369H370L378S390L392H393
 24C302M310G312N325E339K340S354K358H359L367S367V381H382
 25C348M356G358N371E385K386S400K404H405L413S425V427H428
 26N274T282T284S297E311N312A326E330N331L339E351V353Y354
 27S345R353G355N368E382D383Y397Q401H403L411D423Q425Y426
 28S347T355G357D370E384D385Y399Q403H405L413D425Q427Y428
 29C279M287G289N302E316K317S331K335H336L344S356V358H359
 30S347T355G357D370D384D385Y399Q403H405L413D425Q427Y428
 31S347T355G357D370D384D385Y399Q403H405L413D425Q427Y428
 32G319T327K329T342E356N357S371E375G376L384S396Q398Y399
 33Y346P354S356Y367D381S382R402I412P424R426V427
 34C311N319G321S334E348D349S363Q367N368L376K388S390Y391
 35C371M379G381K394E408K409S423K427H428L436S448L450H451
 36S351T359G361D374E388D389Y403K408Y409L417N429Q431H432
 37S311T319G321D334E348D349Y363K368H369L377N389Q391Y392
 38 T315Q329D330S344K348N349L357T369Q371Y372
 39C307A315R317D330E344S345S359K363H364L372N384V386Y387
 40S322T330G332D345E359D360Y374K379H380L388N400Q402Y403
 41S322T330G332D345E359D360Y374K379H380L388N400Q402Y403
 42C306V314G316K329E343K344S358K362H363L371S383L385H386
 43D314V322D324I337D351S352S366A371N372L380E392Q394L395
 44D314V322D324I337D351S352S366A371N372L380E392Q394L395
 45
 46
 47S199T207G209D222D236D237Y251K256H257L265D277Q279Y280
 48S228T236G238D251E265D266F280K285H286L294N306Q308Y309
 49S298
 50 R99S107C109M122E136N137S151G155S156L164K176Q178Y179
 51H273E293E307Q308A322L333E345H347V348
 52H273T293D307A308P322I333E345H347V348
 53H273T293D307A308P322I333E345H347V348
 54S6T14G16D29D43D44Y58K63H64L72D84Q86Y87
 55H273E293E307Q308A322L333E345H347V348
 56Y272S280L282L293D307D308A322I332Q344K346V347
 57P287G295L297E309E323Q324A338L348L360H362V363
 58H274I296D310Q311K325I335E347Y349V350
 59Y275S282F284Y296K310N311E325L335N347F349A350
 60P273Q295Q309D310K324L334D346Y348I349
 61H272P292A306D307S321Q325A344H346V347
 62
 63Y276F282E284Y297K311D312S326K330I336E348M350A351
 64H286L292E294E307S321E322S336K340L346A358K360V361
 65H292M301A303K316S330Q331T345R349N355P368K370V371
 66H281L288E290D303E317Q318F332S336L342E354H356V357
 67Y273L279R281V294T308A309E323R327I333Q345F347V348
 68H270D287S301A302E316R320L326E338H340G341
 69Y283I289E291R304N318Q319S333R337L343A355R357V358
 70E294I301A303E316E330Q331S345R349L355A367H369I370
 71T211R225M226M233
 72E310I317A319E332E346Q347S361R365L371A383H385I386
 73F278I284S286P299D313Q314S328R332L338H350H352V353
 74P278L284G286P299E313Q314T328R332I338E350K352V353
 75P278L284G286P299E313Q314T328R332I338E350K352V353
 76H375V283I285Y298R312Q313E327R331L337E349S351V352
 77Y279V285A287P300D314Q315S329R333L339P351R353V354
 78Y276L282D284E297K311G312R326R330L336S348K350A351
 79Y275V281N283E296K310G311R325R329L335E347K349A350
 80G295L301P303P316S330A331R345I349I355E367W369Q370
 81P278L284G286P299E313Q314T328R332I338D350K352V353
 82H274W281E283E296E310Q311S325P329L335D347H349Q350
 83H275V283I285Y298R312Q313E327R331L337E349S351V352
 84Y293L299E301L314E328A329R343L347I353Q365Y367H368
 85F264L270P272H285E299D300K314P318I324D336Q338V339
 86H262I268F270N283A297E298W312I322S334E336V337
 87A282I288P290P303D317R318S332L342D354H356V357
 88Y272L278F280Y293T307G308S321L331E343G345A346
 89Y256I262D264N277K291D292K306I316K328Q330F331
 90H285V291G293P306E320R321K335L345E357K359V360
 91Y305L311D313P326E340A341R355I365Q377Y379H380
 92Y287L293N295P308D322A323R337I347Q359W361Q362
 93P301L307A309E322E336N337A351A361E373Q375V376
 94Y287L293G295P308E322K323K337L347E359K361V362
 95G266L272P274P287M301Q302R316L326A338Q340V341
 96Y271L277F279Y292T306G307S320L330K342G344A345
 97Y276L282E284E297R311G312K326L336E348K350A351
 98H339L345P347Y360E374A375R395I405P417R419V420
 99C322M330G332K345E359K360S374K378H379L387S399L401H402
100H342L348P350Y363E377A378R398I408S420R422V423
101C308T316G318S331E345N346S360Q364N365L373N385L387Y388
102Y338L344P346Y359E373A374R394I404P416R418V419
103G303T311T313S326E340N341A355E359N360L368E380L382Y383
104Y368L374P376H389E403A404R424I434P446R448T449
105Y334L340P342Y355E369A370R390I400A412R414V415
106S314T322G324D337E351D352Y366K371H372L380N392Q394H395
107H342L348P350Y363E377A378R398I408S420R422V423
108Y363L369P371Y384E398A399R419I429P441R443I444
109Y333L339P341Y354E368A369R389I399A411R413V414
110S359T367G369D382E396D397F411K416H417L425N437Q439H440
111Y334L340P342Y355E369A370R390I400A412R414V415
112C304A312R314D327E341S342S356K360H361L369N381V383Y384
113Y349L355P357Y370E384A385R405I415A427R429V430
114H342L348P350Y363E377A378R398I408S420R422V423
115C308T316G318S331E345N346S360Q364N365L373N385L387Y388
116Y363L369P371Y384E398A399R419I429P441R443I444
117C309M317G319K332E346K347T361K365H366L374S386L388H389
129S352T360G362D375E389D390Y404Q408H410L418N430Q432H433
SEQ IDPos 64Pos 65Pos 66Pos 67Pos 68Pos 69Pos 70Pos 71Pos 72Pos 73Pos 74Pos 75Pos 76
 1R425K428N431S433T434D435E436Q447T451D453S464A466D482
 2R425K428N431S433T434D435E436Q447T451D453S464A466D482
 3R424K427N430S432T433D434E435Q446T450D452S463A465D481
 4R424K427N430S432T433D434E435Q446T450D452S463A465D481
 5R426K429K432S434T425D436E437Q448R452D454S465A467D483
 6R396K399N402S404T405D406E407Q418T422D424S435A437D453
 7R425E428K431S433T434D435E426Q447T451G453S363A466E482
 8R401E404K407S409T410D411E412Q423A427G429S440A442D458
 9R400E403K406S408T409D410D411Q422A426G428S439A441D457
 10R398E401K404S406T407D408E409Q420V424G426S437A439E455
 11Q395E398Q401S403T404D405E406K417A421G423S434G436D452
 12R394E397K400S402T403D404E405H416A420G422S433A435E451
 13R395E398Q401S403T404D405E406K417A421G423S434G436D452
 14R396E399K402S404K405D406E407Q418A422G424S435A437E453
 15R398E401K404S406T407D408E409Q420V424G426S437A439E455
 16R398E401K404S406T407D408E409Q420V424G426S437A439E455
 17R395E398Q401S403T404D405E406K417A421G423S434G436D452
 18R396E399K402S404T405D406E407Q418V422G424S435A437E453
 19R391E394K397S399T400D401E402Q413V417G419S430A432E448
 20R397E400K403S405R406T407E408Q419A423G425S436A438D454
 21R394E397K400S402R403T404E405Q416A420G422S433A435D451
 22R399E402K405S407T408D409E410R421V425G427R438A440D456
 23R403E406K409S411T412D413E414R425V429G431R442A444D460
 24R392E395K398S400T401D402E403R414V418G420R431A433D449
 25R438E441K444S446T447D448E449R460V464G466R477A479D495
 26R364E367K370S372R373D374E375Q386T390G392S403A405E421
 27H436D439G442P444T445S446I447K458V462G464R475A477E493
 28H438D441G444P446T447S448I449K460V464G466G477A479E495
 29R369E372K375S377T378D379E380R391V395G397R408A410D426
 30H438D441G444P446T447S448I449K460V464G466G477A479E495
 31H438D441G444P446T447S448I449K460V464G466G477A479E495
 32R409D412G415S417L418E419E420K431V435G437S448A450D466
 33T437A440S443T445E446S447E448K459K463A467P478A480T496
 34C404S410A412E428
 35R461E464K467S469T470D471E472R483V487G489R500A502D518
 36H442D445A448P450T451A452I453K464V468G470K481A483G499
 37H402D405G408P410T411A412I413K424V428G430R441A443A459
 38R382K385K388Q390L391K392D393K404V408S410N421A423D439
 39R397E400K403
 40H413D416G419P421T422A423I424K435V439G441R452A454A470
 41H413D416G419P421T422A423I424K435V439G441R452A454A470
 42R396E399K402S404T405
 43R405L408S411S413K414E415E416R427V431G433E444A446Q462
 44R405L408S411S413K414E415E416R427V431G433E444A446Q462
 45
 46
 47H290D293G296P298T299S300I301K312V316G318G329A331E347
 48H319D322G325P327T328A329I330K341V345G347R358A360G376
 49
 50R189N192S195S197L198D199E200K211V215G217G228A230E246
 51R358E361L364P366E367D368R369R380I384G386E397S399H415
 52R358H361T364D366A367A368A369S380V384A386P397A399D415
 53R358H361T364D366A367A368A369S380V384A386P397A399D415
 54H97D100G103P105T106S107I108K119V123G125G136A138E154
 55R358E361L364P366E367D368R369R380I384G386E397S399H415
 56R357D360L363D365D366E367E368D379L383G385P396A398D414
 57R373Q276S379P381A382D383Q384Q395V399G401P412A414A430
 58R360D363L366D368D369Q370E371A382V386G388K399A401N417
 59R360D363K366D368R369N370K371Q382I386S388E399A401D417
 60R359E362A365E367R368G369E370K381V385G387K398A400D416
 61R357T360A363S365D366A367A368A379V385G385P396A398E414
 62
 63R361Q364E367E369K370S371D372Q383I387G389Q400A402E418
 64K371E374Q377D379D380Q381E382P393I397G399Q410A412S428
 65R381D384F387R389A390K391E392H403V407G409K420G422A438
 66R367E370E373P375E376P377T378R389V393G395S406A408I424
 67R358E361R364P366N367E368E369D380L384G386E397A399D415
 68R351E354S357D359T360D361Q362T373I377D379P390A392T408
 69I368I371E374S376D377D378E379A390A394G396P407A409E425
 70R380E383R386E388L389P390S391E402V406G408P419A421E437
 71
 72Q396E399R402E404L405P406S407E418V422G424P435A437E453
 73I363E366E369S371D372E373T374Q385I389G391R402A404V420
 74T363K366Q369F371D372E373D374E385V389G391E402A404R420
 75T363K366Q369F371D372E373D374E385V389G391E402A404R420
 76R362E365D368P370Q371N372E373D384I388G390P401S403S419
 77I364E367E370S372E373E374A375E386I390G392H403A405E421
 78R361E364L367P369D370E371E372R383I387H389E400G402F418
 79R360H363L366G368E369E370E371R382I386H388P399G401F417
 80T380E383E386D388D389D390Q391Q402A406V409R420A422D438
 81T363K366Q369F371D372E373D374E385V389G391E402A404R420
 82R360E363A366P368Q369D370R371A382L386G388P399A401K417
 83R362E365D368P370Q371N372E373D384I388G390P401S403S419
 84T378P390A393S395P396E397E398Q409T413A416P427A429Q445
 85Q349A352Q355S357E358T359A360R371I375A378D389A391D407
 86R347E350Q353E355E356R357S358Q369I373A375Q387A389E405
 87T367K370Q373F375D376E377D378S389V393G395A406A408E424
 88R356E359D362T364D365E366E367T378K384T386S397A399D415
 89Q341D344Q347T349D350E351E352Q363I367G369E380S382E398
 90Q370E373K376S378D379A380E381A392I396A398P409A411Q427
 91T390P402A405S407P408D409E410Q421T425P427P439A441Q457
 92T372E375N378D380N381E382Q383R394K398D400K412A414N430
 93M386E389E392S394D395D396E397D408V412G414N425S427E443
 94C372E375R378S380D381A382E383T394I398E400E411A413E429
 95Q351D353G356D358D359D360D361P372I376G378P389A391D407
 96C355E358N361T363D364E365E366T377K383T385S396A398D414
 97R361E364L367S369E370E371E372R383I387H389E400G402F418
 98T430G433S436S438E439G440E441K452S458T460P471A473K489
 99R412E415K418S420T421D422E423R434I438G440N451A453D469
100T433G436S439T441E442G443E444K455N461K463P474A476K492
101R398E401K404S406T407D408E409Q420V434G426S437A439E455
102T429G432S435T437E438S439Q440K451K457G459P470A472K488
103R393E396N399S401R402D403E404Q415A419G421S432A434E450
104T459G462D465T467Q468D469E470R481S487K489P500A502K518
105T425G428S431T433E434S435D436K447T453P455P466A468K484
106G405D408G411P413T414A415I416K427V431G433K444A446G462
107T433G436S439T441E442G443E444K455N461K463P474A476K492
108K454G457N460S462K463D464E465R476D482K484P495A497K513
109T424G427S430T432E433S434D435K446R452A454P465A467K483
110H450D453G456P458T459A460I461K472V476G478R489A491G507
111T425G428S431T433E434S435D436K447R453A455P466A468K484
112R394E397K400S402R403T404E405Q416A420G422S433A435D451
113T440G443S446T448E449S450D451K462R468A470P481A483K499
114T433G436S439T441E442G443E444K455N461K463P474A476K492
115R398K401K404S406T407D408E409Q420V424G426S437A439E455
116K454G457N460S462K463D464E465R476D482K484P495A497K513
117R399E402K405S407T408D409E410R421V425G427N438A440D456
129H443D446G449P451T452S453I454K465V469G471R482A484G500

In another embodiment, said differences at these amino acid positions (corresponding to the respective positions in SEQ ID NO: 2 or 4) include, but are not limited to, one or more of the following:

the amino acid corresponding to position P40 is deleted;

the amino acid corresponding to position K250 is deleted;

the amino acid corresponding to position Q391 is inserted

the amino acid corresponding to position Y520 is deleted;

the amino acid corresponding to position L521 is deleted;

the amino acid corresponding to position D522 is deleted;

the amino acid corresponding to position S523 is deleted;

the amino acid corresponding to position H524 is deleted;

the amino acid corresponding to position 1525 is deleted;

the amino acid corresponding to position Y526 is deleted;

the amino acid corresponding to position V527 is deleted;

the amino acid corresponding to position K528 is deleted;

the amino acid corresponding to position M529 is deleted;

the amino acid corresponding to position D530 is deleted;

the amino acid corresponding to position E531 is deleted;

the amino acid corresponding to position K532 is deleted;

the amino acid corresponding to position T533 is deleted;

the amino acid corresponding to position A534 is deleted;

Corresponding insertions and deletion positions in other species can be found in the following table

SEQ IDPos 1Pos 2Pos 3Pos 4Pos 5Pos 6Pos 7Pos 8Pos 9
1P40K250H391Y520L521D522S523H524I525
2P40K250H391Y520L521D522S523H524I525
3P40K249H390Y519L520D521S522H523I524
4P40K249H390Y519L520D521S522H523I524
5P40K250H392Y521L522D523S524H525L526
7V36K249H391Y520L521E522S523
8S9K222Q367Y496L497N498S499S500S501
9P11K221Q366Y495L496E497S498S499S500
10Q10N220Q364Y493L494E495S496S497H498
11R11K220K361Y490L491N492S493A494S495
12K215K360Y489L490E491S492P493S494
13R11K220Q361Y490L491N492N493A494S495
14R11K217E362Y491L492E493S494S495S496
15R11K220Q364Y493L494E495N496S497S498
16G11K220Q364Y493L494E495N496S497S498
17R11K220Q361Y490L491N492N493A494S495
18R10S220Q362Y491L492E493S494S495T496
19Q5S215Q357Y486L487E488S489S490T491
20S11K218Q363Y492L493E494S495V496S497
21K215K360Y489L490E491A492V493S494
22E12K222K365Y494L495E496S497C498S499
23K12K226K369Y498L499E500S501C502S503
24E12K219K358Y487L488E489S490C491S492
25E58K265K404Y533L534E535S536C537S538
26K191E330Y459L460D461S462Y463S464
27R39P253Q401Y531L532E533S534Q535T536
28R41P255Q403Y533L534E535S536H537T538
29E12K192K335Y464L465E466S467C468S469
30R41P255Q403Y533L534E535S536H537T538
31R41P255Q403Y533L534E535S536H537T538
32L16K227E375Y504I505N506S507S508V509
33V49N265F536L537S538K539Y540A541
34G11K222Q367H466L467N468S469S470A471
35K74K427Y556L557E558S559C560S561
36R45S259Q407Y537L538E539S540H541Q542
37R8S219Q367Y497L498E499S500C501T502
39Q10Q220K363
40P7K232K379D505
41P7K232K379D505
42A15G221K362
43A9E225A371Y500L501Q502G503S504G505
44V9E225A371Y500L501Q502G503S504G505
45P40
46P40
47K109K256Y385L386E387S388H389T390
48K138K285Y405L406E407S408G409I410
49G1E210
50G155
51H453L454R455E456E457A458
52T453D454E455R456A457A458
53T453D454E455R456A457T458
54K63Y192L193E194S195H196T197
55H453L454R455E456E457A458
56E452K453
57G14
58G2Q455
59Q455F456T457M458H459N460
60R454I455S456D457
61H452L453A454G455A456D457
62Q10
63
64E9N466T467R468T469E470E471
65E3Y476L477K478T479L480
66S462L463
67D453R454A455R456S457
68
69G204Y463L464K465T466R467S468
70R201
71
72T16R220
73M1A458L459A460A461H462G463
74A2E456D457G458G459T460P461
75A2E456D457G458G459T460P461
76
77M2A459L460D461A462Q463G464
78G456
79E455
80M1V216H476L477H478D479C480Q481
81A2E456D457G458G459T460P461
82D455I456D457V458
83
84E7Q484V485
85K443
86R441A442A443S444R445S446
87A2Q460S461P462G463
88M1K201
89N434K435F436
90A209Y465L466K467G468R469
91D218V496R497R498
92K208Q468L469S470I471I472N473
93S4K221D481L482T483A484R485V486
94A211F467L468Q469S470R471
95Q445R446
96K200S452V453S454
97K198S456L457C458
98G49K260F529M530S531R532Y533A534
99P12G237K378Y507L508E509S510C511S512
100E55K263F532L533S534Q535Y536A537
101H10E222Q364Y493L494E495S496S497H498
102D51K259F528L529S530R531G532V533
103K14E359Y488L489D490S491Y492S493
104E81K289F558L559S560Q561Y562S563
105V44K255F524L525T526K527Y528A529
106A9K224K371Y500L501E502L503G504I505
107E55K263F532L533S534Q535Y536A537
108A76K284F553L554S555Q556Y557S558
109V46K254F523L524T525K526Y527A528
110P55K269K416Y545L546E547S548G549I550
111V47K255F524L525T526K527Y528A529
112E7Q217K360Y489L490E491A492V493S494
113V62K270F539L540T541K542Y543A544
114E55K263F532L533S534Q535Y536A537
115H10E222Q364Y493L494E495S496S497H498
116A76K284F553L554S555Q556Y557S558
117K11G224K365Y494L495E496S497C498S499
129P40K262Q408Y538L539E540S541G542I543
SEQ IDPos 10Pos. 11Pos 12Pos 13Pos 14Pos 15Pos 16Pos 17Pos 18
1Y526V527K528M529D530E531K532T533A534
2Y526V527K528M529D530E531K532T533A534
3Y525V526K527M528D529E530K531T532A533
4Y525V526K527M528D529E530K531T532A533
5Y527V528K529M530N531E532K533T534A535
7N524K525M526T527E528E529T530I531
8D502G503K504M505F506K507E508
9D501D502K503M504L505K506E507G508P509
10Q499K500L501L502K503D504
11D496N497T498V499P500D501K502
12D495E496K497T498R499H500K501G502
13D496N497S498V499
14D497G498K499I500L501Q502Q503G504S505
15D499D500K501M502L503K504E505G506S507
16D499D500K501M502L503K504E505G506S507
17D496N497T498V499A500D501K502
18D497Q498S499C500A501E502
19D492Q493S494C495A496E497
20T498D499S500K501R502H503C504
21A495D496T497K498N499H500S501
22N500D501K502K503P504N505D506S507L508
23N504D505K506K507P508D509E510S511L512
24N493D494K495K496P497N498D499S500L501
25N539D540K541K542P543N544D545S546L547
26N465Q466K467
27K537H538N539N540S541H542
28K539H540N541N542L543H544
29N470D471K472K473P474N475D476S477
30K539H540N541N542S543H544
31K539H540N541N542S543H544
32
33R542S543F544
34D472D473K474M475L476K477K478G479S480
35N562D563K564K565P566E567D568S569
36A543R544
37D503Q504D505N506
39
40
41
42
43G506K507K508V509F510T511M512A513S514
44G506K507K508V509F510T511M512A513S514
45
46
47K391H392N393N394S395H396
48K411Q412V413S414
49
50
51A459G460G461L462A463K464L465V466L467
52Q459P460H461
53Q459P460H461
54K198H199N200N201S202H203
55A459G460G461L462A463K464L465V466L467
56
57
58
59V461Q462
60
61R458A459V460A461A462T463G464P465
62
63
64S472
65
66
67
68
69A469V470A471S472L473R474
70
71
72
73T464T465A466V467S468T469E470T471A472
74G462
75G462
76
77T465T466A467D468T469L470E471Q472A473
78
79
80T482A483N484
81G462
82
83
84
85
86I447A448
87
88
89
90
91
92D474N475
93
94
95
96
97
98Y535K536
99N513D514N515K516P517E518D519S520L521
100Y538K539
101D499K500L501L502K503
102Y534K535
103D494E495K496R497C498
104D564K565
105Y530K531
106K506R507D508N509
107Y538K539
108D559K560
109Y529K530
110K551H552V553N554
111Y530K531
112A495D496T497K498N499H500S501
113Y545K546
114Y538K539
115D499K500L501L502K503
116D559K560
117N500D501K502K503S504E505D506S507L508
129K544Q545D546N547

The inventors of the present invention have surprisingly found out that a substitution of amino acids at Gly210/211, Q119, S387, or S412, or at other non-active sites, in particular when combined with a substitution at positions at other non-active sites or when combined with mutations at active sites, i.e. corresponding to positions 128, 397, and/or 420 of the Amaranthus type II PPO increase herbicide tolerance.

Consequently, in preferred embodiments, combinations of mutations corresponding to the respective positions in SEQ ID NO: 2 or 4 are encompassed by the present invention and are shown in the following Table AA.

TABLE AA
doubleTriplequadruplequintuple
Q119L, R128AQ119T, G210T, S387LQ119L, R128A, Q323H,Q119T, S387L, S412N,
S412NM414Q, E436I
Q119L, Q323HQ119T, G211A, S387LQ119L, Q323H, L397D,
S412N
Q119T, S387LQ119T, G211A, F420MQ119L, Q323H, S412N,
F420M
Q119L, L397DQ119L, R128A, F420MQ119T, S387L, S412N,
M414Q
Q119L, S412NQ119T, G210T, F420MQ119T, S387L, M414Q,
E436I
Q119T, M414QQ119L, Q323H, S412NR128A, G211A, S387L,
F420M
Q119L, F420MQ119T, S387L, S412N
Q119T, E436IQ119T, S387L, M414Q
K127N, R128CQ119T, S387L, F420M
R128A, G210TQ119T, S387L, E436I
R128A, G211AQ119L, L397D, F420M
R128A, S387LQ119T, S412N, E436I
R128A, S412NQ119T, M414Q, E436I
D202A, S387VR128A, G210T, F420V
G210C, G211AR128A, G211A, F420M
G210T, S387LR128A, S412N, F420M
G210C, L397QR128A, F420V, d_H524
G210T, S412NR128A, F420V, d_V527
G210T, M414QG210T, G211A, M414Q
G210S, F420MG211A, S387L, F420M
G211A, S387LG211C, L397Q, F420V
G211C, L397QS387V, S412N, M414Q
G211A, M414QS387L, S412N, E436I
G211A, L397QS387L, M414Q, E436I
G211A, F420ML397D, S412N, F420M
Q323H, S412NL397E, F420M, d, H524
M343T, F420ML397E, F420M, d, V527
D372E, K373Di_Q391, H392K, N393H
D372E, F420MR128A, G211N, F420M
S387L, L397QR128A, G210S, F420M
S387V, S412NR128A, G211C, F420M
S387L, M414Q
S387L, F420M
S387V, R425Y
S387L, E436I
L397D, S412N
S412N, M414Q
S412N, F420M
S412N, E436I
M414Q, E436I
M414Q, F420M
F420M, d_H524
F420M, d_V527
E436I, F420M
G211C, F420V
G211D, F420M
G211N, F420M
G210T, G211C

It will be within the knowledge of the skilled artisan to identify conserved regions and motifs shared between the hom*ologues, orthologues and paralogues. Having identified such conserved regions that may represent suitable binding motifs, amino acids can be chosen to be substituted by any other amino acid, for example by conserved amino acids, preferably by the amino acid substitutions described SUPRA using SEQ ID NO:2 or 4 as reference.

Accordingly, the plant or plant of the present invention comprises a polynucleotide encoding a mutated PPO polypeptide which comprises one or more of the following motifs.

i) Motif 1:
(SEQ ID NO: 131)
GT[C/S]GGDP
    • Wherein the glycine at position 4, and/or 5 within said motif of the corresponding wildtype sequence is substituted by any other amino acid
ii)
Motif 2:
(SEQ ID NO: 132)
[A/S/C]PS[D/N][X][X]L
    • Wherein the serine at position 3 within said motif of the corresponding wildtype sequence is substituted by any other amino acid
iii) Motif 3:
(SEQ ID NO: 133)
[R/Q][E/D]KQQ[L/Y]P
    • Wherein the glutamine at position 4 within said motif of the corresponding wildtype sequence is substituted by any other amino acid
iv) Motif 4:
(SEQ ID NO: 134)
L[I/V]PSKE
    • wherein the serine at position 4 within said motif of the corresponding wildtype sequence is substituted by any other amino acid.

Preferably, the mutated PPO polypeptide of the present invention in addition comprises one or more of the following motifs

    • a. Motif 5: SQ[N/K/H]KRYI (SEQ ID NO: 135), wherein the Arg at position 5 within said motif is substituted by any other amino acid;
    • b. Motif 6: TLGTLFSS (SEQ ID NO: 136), wherein the Leu at position 2 within said motif is substituted by by any other amino acid;
    • c. Motif 7: [F/Y]TTF[V/I]GG (SEQ ID NO: 137), wherein the Phe at position 4 within said motif is substituted by by any other amino acid.

Another object refers to a method of identifying a nucleotide sequence encoding a mutated PPO which is resistant or tolerant to a herbicide, the method comprising:

    • a) generating a library of mutated PPO-encoding nucleic acids,
    • b) screening a population of the resulting mutated PPO-encoding nucleic acids by expressing each of said nucleic acids in a cell or plant and treating said cell or plant with a herbicide,
    • c) comparing the herbicide-tolerance levels provided by said population of mutated PPO encoding nucleic acids with the herbicide-tolerance level provided by a control PPO-encoding nucleic acid,
    • d) selecting at least one mutated PPO-encoding nucleic acid that provides a significantly increased level of tolerance to a herbicide as compared to that provided by the control PPO-encoding nucleic acid.

Herbicide-tolerance levels may also be determined by measuring the detoxification rate in a cell, tissue, or plant.

Detoxification rate is the rate of herbicide degradation within a certain timeframe in a respective tissue. The degradation and product formation can be determined analytically for instance by liquid chromatographie (LC) coupled to a high resolution (HR) mass spectromter (MS). Product can be determined by comparison to authentic standards and/or by structure elucidation.

In a preferred embodiment, the mutated PPO-encoding nucleic acid selected in step d) provides at least 2-fold as much resistance or tolerance of a cell or plant to a herbicide as compared to that provided by the control PPO-encoding nucleic acid.

In a further preferred embodiment, the mutated PPO-encoding nucleic acid selected in step d) provides at least 2-fold, at least 5-fold, at least 10-fold, at least 20-fold, at least 50-fold, at least 100-fold, at least 500-fold, as much resistance or tolerance of a cell or plant to a herbicide as compared to that provided by the control PPO-encoding nucleic acid.

The resistance or tolerance can be determined by generating a transgenic plant or host cell, preferably a plant cell, comprising a nucleic acid sequence of the library of step a) and comparing said transgenic plant with a control plant or host cell, preferably a plant cell.

Many methods well known to the skilled artisan are available for obtaining suitable candidate nucleic acids for identifying a nucleotide sequence encoding a mutated PPO from a variety of different potential source organisms including microbes, plants, fungi, algae, mixed cultures etc. as well as environmental sources of DNA such as soil. These methods include inter alia the preparation of cDNA or genomic DNA libraries, the use of suitably degenerate oligonucleotide primers, the use of probes based upon known sequences or complementation assays (for example, for growth upon tyrosine) as well as the use of mutagenesis and shuffling in order to provide recombined or shuffled mutated PPO-encoding sequences.

Nucleic acids comprising candidate and control PPO encoding sequences can be expressed in yeast, in a bacterial host strain, in an alga or in a higher plant such as tobacco or Arabidopsis and the relative levels of inherent tolerance of the PPO encoding sequences screened according to a visible indicator phenotype of the transformed strain or plant in the presence of different concentrations of the selected herbicide. Dose responses and relative shifts in dose responses associated with these indicator phenotypes (formation of brown color, growth inhibition, herbicidal effect etc) are conveniently expressed in terms, for example, of GR50 (concentration for 50% reduction of growth) or MIC (minimum inhibitory concentration) values where increases in values correspond to increases in inherent tolerance of the expressed PPO. For example, in a relatively rapid assay system based upon transformation of a bacterium such as E. coli, each mutated PPO encoding sequence may be expressed, for example, as a DNA sequence under expression control of a controllable promoter such as the lacZ promoter and taking suitable account, for example by the use of synthetic DNA, of such issues as codon usage in order to obtain as comparable a level of expression as possible of different PPO sequences. Such strains expressing nucleic acids comprising alternative candidate PPO sequences may be plated out on different concentrations of the selected herbicide in, optionally, a tyrosine supplemented medium and the relative levels of inherent tolerance of the expressed PPO enzymes estimated on the basis of the extent and MIC for inhibition of the formation of the brown, ochronotic pigment, or by measuring the herbicide degradation via LC-HRMS (liquid chromatography high resolution mass spectrometry).

In another embodiment, candidate nucleic acids are transformed into plant material to generate a transgenic plant, regenerated into morphologically normal fertile plants which are then measured for differential tolerance to selected herbicides as described in the Example section hereinafter. Many suitable methods for transformation using suitable selection markers such as kanamycin, binary vectors such as from Agrobacterium and plant regeneration as, for example, from tobacco leaf discs are well known in the art. Optionally, a control population of plants is likewise transformed with a nucleic acid expressing the control PPO. The average, and distribution, of herbicide tolerance levels of a range of primary plant transformation events or their progeny to herbicides described supra are evaluated in the normal manner based upon plant damage, meristematic bleaching symptoms etc. at a range of different concentrations of herbicides. These data can be expressed in terms of, for example, GR50 values derived from dose/response curves having “dose” plotted on the x-axis and “percentage kill”, “herbicidal effect”, “numbers of emerging green plants” etc. plotted on the y-axis where increased GR50 values correspond to increased levels of inherent tolerance of the expressed PPO. Herbicides can suitably be applied pre-emergence or post-emergence.

Another object of the present invention refers to an isolated and/or recombinantly produced and/or synthetic nucleic acid molecule comprising a nucleic acid molecule encoding a mutated PPO polypeptide selected from the group consisting of:

    • (a) a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof;
    • (b) a nucleic acid molecule, which, as a result of the degeneracy of the genetic code, can be derived from a nucleic acid molecule encoding a mutated PPO polypeptide comprising the sequence of—SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant, paralogue, orthologue or hom*olog thereof- and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (c) a nucleic acid molecule encoding a mutated PPO polypeptide having 30% or more identity, preferably at least 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5% or more, with the amino acid sequence of the PPO polypeptide sequence of SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • (d) nucleic acid molecule which hybridizes with a nucleic acid molecule of (a), (b), or (c), under stringent hybridization conditions and confers increased herbicide tolerance or resistance, as compared to a corresponding, e.g. non-transformed, wild type plant cell, a plant or a part thereof;
    • wherein the amino acid sequence of the encoded mutated PPO polypeptide differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 32, 53, 57, 61, 63, 64, 65, 67, 71, 76, 82, 83, 85, 86, 87, 88, 91, 103, 104, 106, 108, 116, 119, 126, 127, 129, 139, 159, 210, 211, 224, 245, 246, 248, 249, 252, 253, 254, 255, 257, 259, 260, 262, 264, 286, 291, 305, 308, 309, 323, 335, 343, 345, 358, 372, 373, 387, 391, 392, 400, 412, 414, 415, 425, 428, 431, 433, 434, 435, 436, 447, 451, 453, 464, 466, 482 of SEQ ID NO: 1 or 2, wherein said difference refers to a substitution of the amino acid at that positions by any other amino acid.

In a preferred embodiment, the amino acid sequence of the encoded mutated PPO polypeptide additionally differs from the wildtype amino acid sequence of a PPO polypeptide at one or more positions corresponding to positions 128, 397, or 420 of SEQ ID NO: 1 or 2, wherein said difference refers to a substitution of the amino acid at that positions by any other amino acid.

In another preferred embodiment, the amino acids at positions corresponding to positions 128, 211, 387, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 128 is substituted by Ala, the amino acid corresponding to position 211 is substituted by Ala, the amino acid corresponding to position 387 is substituted by Leu, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, the amino acids at positions corresponding to positions 128, 211, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 128 is substituted by Ala, the amino acid corresponding to position 211 is substituted by Asn or Cys, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, the amino acids at positions corresponding to positions 128, 210, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 128 is substituted by Ala, the amino acid corresponding to position 210 is substituted by Ser, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, the amino acids at positions corresponding to positions 128, 412, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 128 is substituted by Ala, the amino acid corresponding to position 412 is substituted by Asn, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, the amino acids at positions corresponding to positions 119, 128, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 119 is substituted by Leu, the amino acid corresponding to position 128 is substituted by Ala, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, the amino acids at positions corresponding to positions 211, 397 and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 211 is substituted by Ala, the amino acid corresponding to position 397 is substituted by Gln, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, amino acids at positions corresponding to positions 211, and 420 of SEQ ID NO: 1 or 2 are substituted by any other amino acid.

Preferably, the amino acid corresponding to position 211 is substituted by Cys, and the amino acid corresponding to position 420 is substituted by Val.

Preferably, the amino acid corresponding to position 211 is substituted by Ala, and the amino acid corresponding to position 420 is substituted by Val.

Preferably, the amino acid corresponding to position 211 is substituted by Asp, and the amino acid corresponding to position 420 is substituted by Met.

Preferably, the amino acid corresponding to position 211 is substituted by Asn, and the amino acid corresponding to position 420 is substituted by Met.

In another preferred embodiment, amino acids at positions corresponding to positions 210, and 211 of SEQ ID NO: 1 or 2 are substituted by any other amino acid. Preferably, the amino acid corresponding to position 210 is substituted by Thr, and the amino acid corresponding to position 211 is substituted by Cys.

In a preferred embodiment, the encoded mutated PPO is a variant of SEQ ID NO:2 or 4, which includes one or more of the following:

the amino acid corresponding to position G32 is substituted by any other amino acid

the amino acid corresponding to position V53 is substituted by any other amino acid

the amino acid corresponding to position A57 is substituted by any other amino acid

the amino acid corresponding to position K61 is substituted by any other amino acid

the amino acid corresponding to position K63 is substituted by any other amino acid

the amino acid corresponding to position S64 is substituted by any other amino acid

the amino acid corresponding to position H65 is substituted by any other amino acid

the amino acid corresponding to position L67 is substituted by any other amino acid

the amino acid corresponding to position L71 is substituted by any other amino acid

the amino acid corresponding to position S76 is substituted by any other amino acid

the amino acid corresponding to position L82 is substituted by any other amino acid

the amino acid corresponding to position K83 is substituted by any other amino acid

the amino acid corresponding to position V85 is substituted by any other amino acid

the amino acid corresponding to position K86 is substituted by any other amino acid

the amino acid corresponding to position K87 is substituted by any other amino acid

the amino acid corresponding to position D88 is substituted by any other amino acid

the amino acid corresponding to position I91 is substituted by any other amino acid

the amino acid corresponding to position E103 is substituted by any other amino acid

the amino acid corresponding to position A104 is substituted by any other amino acid

the amino acid corresponding to position V106 is substituted by any other amino acid

the amino acid corresponding to position S108 is substituted by any other amino acid

the amino acid corresponding to position R116 is substituted by any other amino acid

the amino acid corresponding to position Q119 is substituted by any other amino acid, preferably Leu

the amino acid corresponding to position K127 is substituted by any other amino acid

the amino acid corresponding to position N126 is substituted by any other amino acid

the amino acid corresponding to position Y129 is substituted by any other amino acid

the amino acid corresponding to position L139 is substituted by any other amino acid

the amino acid corresponding to position Q159 is substituted by any other amino acid

the amino acid corresponding to position G210 is substituted by any other amino acid, preferably Ser;

the amino acid corresponding to position G211 is substituted by any other amino acid, preferably Cys, Ala, Asp, Thr, or Asn;

the amino acid corresponding to position E224 is substituted by any other amino acid

the amino acid corresponding to position L245 is substituted by any other amino acid

the amino acid corresponding to position K248 is substituted by any other amino acid

the amino acid corresponding to position S246 is substituted by any other amino acid

the amino acid corresponding to position E249 is substituted by any other amino acid

the amino acid corresponding to position G252 is substituted by any other amino acid

the amino acid corresponding to position E253 is substituted by any other amino acid

the amino acid corresponding to position N254 is substituted by any other amino acid

the amino acid corresponding to position A255 is substituted by any other amino acid

the amino acid corresponding to position 1257 is substituted by any other amino acid

the amino acid corresponding to position K259 is substituted by any other amino acid

the amino acid corresponding to position P260 is substituted by any other amino acid

the amino acid corresponding to position V262 is substituted by any other amino acid

the amino acid corresponding to position G264 is substituted by any other amino acid

the amino acid corresponding to position D286 is substituted by any other amino acid

the amino acid corresponding to position Q291 is substituted by any other amino acid

the amino acid corresponding to position P305 is substituted by any other amino acid

the amino acid corresponding to position G308 is substituted by any other amino acid

the amino acid corresponding to position N309 is substituted by any other amino acid

the amino acid corresponding to position Q323 is substituted by any other amino acid

the amino acid corresponding to position R335 is substituted by any other amino acid

the amino acid corresponding to position M343 is substituted by any other amino acid

the amino acid corresponding to position F345 is substituted by any other amino acid

the amino acid corresponding to position T358 is substituted by any other amino acid

the amino acid corresponding to position D372 is substituted by any other amino acid

the amino acid corresponding to position K373 is substituted by any other amino acid

the amino acid corresponding to position S387 is substituted by any other amino acid, preferably Leu;

the amino acid corresponding to position H391 is substituted by any other amino acid

the amino acid corresponding to position N392 is substituted by any other amino acid

the amino acid corresponding to position L400 is substituted by any other amino acid

the amino acid corresponding to position S412 is substituted by any other amino acid, preferably Leu;

the amino acid corresponding to position M414 is substituted by any other amino acid

the amino acid corresponding to position C415 is substituted by any other amino acid

the amino acid corresponding to position R425 is substituted by any other amino acid

the amino acid corresponding to position K428 is substituted by any other amino acid

the amino acid corresponding to position N431 is substituted by any other amino acid

the amino acid corresponding to position S433 is substituted by any other amino acid

the amino acid corresponding to position M434 is substituted by any other amino acid

the amino acid corresponding to position D435 is substituted by any other amino acid

the amino acid corresponding to position E436 is substituted by any other amino acid

the amino acid corresponding to position Q447 is substituted by any other amino acid

the amino acid corresponding to position T451 is substituted by any other amino acid

the amino acid corresponding to position D453 is substituted by any other amino acid

the amino acid corresponding to position S464 is substituted by any other amino acid

the amino acid corresponding to position Q466 is substituted by any other amino acid

the amino acid corresponding to position D482 is substituted by any other amino acid

In another preferred embodiment, the encoded mutated PPO is a variant of SEQ ID NO:2 or 4, which includes one or more of the following:

the amino acid corresponding to position P40 is deleted;

the amino acid corresponding to position K250 is deleted;

the amino acid corresponding to position Q391 is inserted

the amino acid corresponding to position Y520 is deleted;

the amino acid corresponding to position L521 is deleted;

the amino acid corresponding to position D522 is deleted;

the amino acid corresponding to position S523 is deleted;

the amino acid corresponding to position H524 is deleted;

the amino acid corresponding to position I525 is deleted;

the amino acid corresponding to position Y526 is deleted;

the amino acid corresponding to position V527 is deleted;

the amino acid corresponding to position K528 is deleted;

the amino acid corresponding to position M529 is deleted;

the amino acid corresponding to position D530 is deleted;

the amino acid corresponding to position E531 is deleted;

the amino acid corresponding to position K532 is deleted;

the amino acid corresponding to position T533 is deleted;

the amino acid corresponding to position A534 is deleted;

In other aspects, the present invention encompasses a progeny or a descendant of a herbicide-tolerant plant of the present invention as well as seeds derived from the herbicide-tolerant plants of the invention and cells derived from the herbicide-tolerant plants of the invention.

In some embodiments, the present invention provides a progeny or descendant plant derived from a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, wherein the progeny or descendant plant comprises in at least some of its cells the recombinant polynucleotide operably linked to the promoter, the expression of the mutated PPO polypeptide conferring to the progeny or descendant plant tolerance to the herbicides.

In one embodiment, seeds of the present invention preferably comprise the herbicide-tolerance characteristics of the herbicide-tolerant plant. In other embodiments, a seed is capable of germination into a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the progeny or descendant plant tolerance to the herbicides.

In some embodiments, plant cells of the present invention are capable of regenerating a plant or plant part. In other embodiments, plant cells are not capable of regenerating a plant or plant part. Examples of cells not capable of regenerating a plant include, but are not limited to, endosperm, seed coat (testa & pericarp), and root cap.

In another embodiment, the present invention provides a plant cell of or capable of regenerating a plant comprising in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the plant tolerance to the herbicides, wherein the plant cell comprises the recombinant polynucleotide operably linked to a promoter.

In other embodiments, the present invention provides a plant cell comprising a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the cell tolerance to the herbicides.

In another embodiment, the invention refers to a plant cell transformed by a nucleic acid encoding a mutated PPO polypeptide according to the present invention, wherein expression of the nucleic acid in the plant cell results in increased resistance or tolerance to a herbicide as compared to a wild type variety of the plant cell. Preferably, the mutated PPO polypeptide encoding nucleic acid comprises a polynucleotide sequence selected from the group consisting of: a) a polynucleotide as shown in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, or a variant or derivative thereof; b) a polynucleotide encoding a polypeptide as shown in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, or a variant or derivative thereof; c) a polynucleotide comprising at least 60 consecutive nucleotides of any of a) or b); and d) a polynucleotide complementary to the polynucleotide of any of a) through c).

In some aspects, the present invention provides a plant product prepared from the herbicide-tolerant plants hereof. In some embodiments, examples of plant products include, without limitation, grain, oil, and meal. In one embodiment, a plant product is plant grain (e.g., grain suitable for use as feed or for processing), plant oil (e.g., oil suitable for use as food or biodiesel), or plant meal (e.g., meal suitable for use as feed).

In one embodiment, a plant product prepared from a plant or plant part is provided, wherein the plant or plant part comprises in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the a plant or plant part tolerance to the herbicides.

In another embodiment, the invention refers to a method of producing a transgenic plant cell with an increased resistance to a herbicide as compared to a wild type variety of the plant cell comprising, transforming the plant cell with an expression cassette comprising a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide.

In another embodiment, the invention refers to a method of producing a transgenic plant comprising, (a) transforming a plant cell with an expression cassette comprising a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, and (b) generating a plant with an increased resistance to herbicide from the plant cell. In some aspects, the present invention provides a method for producing a herbicide-tolerant plant. In one embodiment, the method comprises: regenerating a plant from a plant cell transformed with a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the plant tolerance to the herbicides.

The term “expression/expressing” or “gene expression” means the transcription of a specific gene or specific genes or specific genetic construct. The term “expression” or “gene expression” in particular means the transcription of a gene or genes or genetic construct into structural RNA (rRNA, tRNA) or mRNA with or without subsequent translation of the latter into a protein. The process includes transcription of DNA and processing of the resulting mRNA product.

To obtain the desired effect, i.e. plants that are tolerant or resistant to the herbicide derivative herbicide of the present invention, it will be understood that the at least one nucleic acid is “over-expressed” by methods and means known to the person skilled in the art.

The term “increased expression” or “overexpression” as used herein means any form of expression that is additional to the wild-type expression level. Methods for increasing expression of genes or gene products are well documented in the art and include, for example, overexpression driven by appropriate promoters, the use of transcription enhancers or translation enhancers. Isolated nucleic acids which serve as promoter or enhancer elements may be introduced in an appropriate position (typically upstream) of a non-heterologous form of a polynucleotide so as to upregulate expression of a nucleic acid encoding the polypeptide of interest. For example, endogenous promoters may be altered in vivo by mutation, deletion, and/or substitution (see, Kmiec, U.S. Pat. No. 5,565,350; Zarling et al., WO9322443), or isolated promoters may be introduced into a plant cell in the proper orientation and distance from a gene of the present invention so as to control the expression of the gene. If polypeptide expression is desired, it is generally desirable to include a polyadenylation region at the 3′-end of a polynucleotide coding region. The polyadenylation region can be derived from the natural gene, from a variety of other plant genes, or from T-DNA. The 3′ end sequence to be added may be derived from, for example, the nopaline synthase or octopine synthase genes, or alternatively from another plant gene, or less preferably from any other eukaryotic gene. An intron sequence may also be added to the 5′ untranslated region (UTR) or the coding sequence of the partial coding sequence to increase the amount of the mature message that accumulates in the cytosol. Inclusion of a spliceable intron in the transcription unit in both plant and animal expression constructs has been shown to increase gene expression at both the mRNA and protein levels up to 1000-fold (Buchman and Berg (1988) Mol. Cell biol. 8: 4395-4405; Callis et al. (1987) Genes Dev 1:1183-1200). Such intron enhancement of gene expression is typically greatest when placed near the 5′ end of the transcription unit. Use of the maize introns Adhl-S intron 1, 2, and 6, the Bronze-1 intron are known in the art. For general information see: The Maize Handbook, Chapter 116, Freeling and Walbot, Eds., Springer, N.Y. (1994).

Where appropriate, nucleic acid sequences may be optimized for increased expression in a transformed plant. For example, coding sequences that comprise plant-preferred codons for improved expression in a plant can be provided. See, for example, Campbell and Gowri (1990) Plant Physiol., 92: 1-11 for a discussion of host-preferred codon usage. Methods also are known in the art for preparing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.

Consequently, mutated PPO nucleic acids of the invention are provided in expression cassettes for expression in the plant of interest. The cassette will include regulatory sequences operably linked to a mutated PPO nucleic acid sequence of the invention. The term “regulatory element” as used herein refers to a polynucleotide that is capable of regulating the transcription of an operably linked polynucleotide. It includes, but not limited to, promoters, enhancers, introns, 5′ UTRs, and 3′ UTRs. By “operably linked” is intended a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple expression cassettes.

Such an expression cassette is provided with a plurality of restriction sites for insertion of the mutated PPO nucleic acid sequence to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes. The expression cassette of the present invention will include in the 5′-3′ direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a mutated PPO encoding nucleic acid sequence of the invention, and a transcriptional and translational termination region (i.e., termination region) functional in plants. The promoter may be native or analogous, or foreign or heterologous, to the plant host and/or to the mutated PPO nucleic acid sequence of the invention. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. Where the promoter is “foreign” or “heterologous” to the plant host, it is intended that the promoter is not found in the native plant into which the promoter is introduced. Where the promoter is “foreign” or “heterologous” to the mutated PPO nucleic acid sequence of the invention, it is intended that the promoter is not the native or naturally occurring promoter for the operably linked mutatedTriA nucleic acid sequence of the invention. As used herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence. While it may be preferable to express the mutated PPO nucleic acids of the invention using heterologous promoters, the native promoter sequences may be used. Such constructs would change expression levels of the mutated PPO protein in the plant or plant cell. Thus, the phenotype of the plant or plant cell is altered.

The termination region may be native with the transcriptional initiation region, may be native with the operably linked mutated PPO sequence of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous to the promoter, the mutated PPO nucleic acid sequence of interest, the plant host, or any combination thereof). Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet. 262: 141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5: 141-149; Mogen et al. (1990) Plant Cell 2: 1261-1272; Munroe et al. (1990) Gene 91: 151-158; Ballas t al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acid Res. 15:9627-9639. Where appropriate, the gene(s) may be optimized for increased expression in the transformed plant. That is, the genes can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) Plant Physiol. 92: 1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. 5,380,831, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477-498, herein incorporated by reference.

Thus, the present invention provides an expression cassette comprising a mutated PPO nucleic acid nucleic acid molecule according to the present invention and a promoter operable in plant cells.

While the polynucleotides of the invention may find use as selectable marker genes for plant transformation, the expression cassettes of the invention can include another selectable marker gene for the selection of transformed cells. Selectable marker genes, including those of the present invention, are utilized for the selection of transformed cells or tissues. Marker genes include, but are not limited to, genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). See generally, Yarranton (1992) Curr. Opin. Biotech. 3:506-511; Christophers on et al (1992) Proc. Natl. Acad. ScL USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol Microbiol 6:2419-2422; Barkley et al (1980) in The Operon, pp. 177-220; Hu et al (1987) Cell 48:555-566; Brown et al (1987) Cell 49:603-612; Figge et al (1988) Cell 52:713-722; Deuschle et al (1989) Proc. Natl Acad. AcL USA 86:5400-5404; Fuerst et al (1989) Proc. Natl Acad. ScL USA 86:2549-2553; Deuschle et al (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al (1993) Proc. Natl Acad. ScL USA 90: 1917-1921; Labow et al (1990) Mol Cell Biol 10:3343-3356; Zambretti et al (1992) Proc. Natl Acad. ScL USA 89:3952-3956; Bairn et al (1991) Proc. Natl Acad. ScL USA 88:5072-5076; Wyborski et al (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman (1989) Topics Mol Struc. Biol 10: 143-162; Degenkolb et al (1991) Antimicrob. Agents Chemother. 35: 1591-1595; Kleinschnidt et al (1988) Biochemistry 27: 1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al (1992) Proc. Natl Acad. ScL USA 89:5547-5551; Oliva et al (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka et al (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al (1988) Nature 334:721-724. Such disclosures are herein incorporated by reference. The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the present invention.

Further, additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Also, if desired, sequences can be readily modified to avoid predicted hairpin secondary mRNA structures. Nucleotide sequences for enhancing gene expression can also be used in the plant expression vectors. These include, for example, introns of the maize Adh gene Adhl-S intron 1, 2, and 6 (Callis et al. Genes and Development 1: 1183-1200, 1987), and leader sequences, (W-sequence) from the Tobacco Mosaic virus (TMV), Maize Chlorotic Mottle Virus and Alfalfa Mosaic Virus (Gallie et al. Nucleic Acid Res. 15:8693-8711, 1987 and Skuzeski et al. Plant Mol. Biol. 15:65-79, 1990). The first intron from the shrunken-1 locus of maize has been shown to increase expression of genes in chimeric gene constructs. U.S. Pat. Nos. 5,424,412 and 5,593,874 disclose the use of specific introns in gene expression constructs, and Gallie et al. (Plant Physiol. 106:929-939, 1994) also have shown that introns are useful for regulating gene expression on a tissue specific basis. To further enhance or to optimize gene expression, the plant expression vectors of the invention also may contain DNA sequences containing matrix attachment regions (MARs). Plant cells transformed with such modified expression systems, then, may exhibit overexpression or constitutive expression of a nucleotide sequence of the invention.

The invention further provides an isolated recombinant expression vector comprising the expression cassette containing a mutated PPO nucleic acid nucleic acid as described above, wherein expression of the vector in a host cell results in increased tolerance to a herbicide as compared to a wild type variety of the host cell. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid,” which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as “expression vectors.” In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, “plasmid” and “vector” can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses, and adeno-associated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cells and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of polypeptide desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce polypeptides or peptides, including fusion polypeptides or peptides, encoded by nucleic acids as described herein (e.g., mutated PPO polypeptides, fusion polypeptides, etc.)

Expression vectors may additionally contain 5′ leader sequences in the expression construct. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyo carditis 5′ noncoding region) (Elroy-Stein et al. (1989) PNAS, 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallie et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus) (Virology 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology 81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968.

Other methods known to enhance translation also can be utilized, for example, introns, and the like. In preparing an expression vector, the various nucleic acid fragments may be manipulated, so as to provide for the nucleic acid sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the nucleic acid fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous nucleic acid, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.

A number of promoters can be used in the practice of the invention. The promoters can be selected based on the desired outcome. The nucleic acids can be combined with constitutive, tissue-preferred, or other promoters for expression in plants.

Constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2: 163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), and the like. Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611.

Tissue-preferred promoters can be utilized to target enhanced expression within a particular plant tissue. Such tissue-preferred promoters include, but are not limited to, leaf-preferred promoters, root-preferred promoters, seed-preferred promoters, and stem-preferred promoters. Some examples of tissue-preferred promoters are described by, e.g., Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet. 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2): 157-168; Rinehart et al. (1996) Plant Physiol. 1 12(3): 1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 1 12(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco ef al. (1993) Plant Mol Biol. 23(6): 1 129-1138; Matsuoka et al. (1993) Voc Natl. Acad. ScL USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J 4(3):495-505. Promoters can be modified, if necessary, for weak expression.

In some embodiments, the nucleic acids of interest can be targeted to the chloroplast for expression. In this manner, where the nucleic acid of interest is not directly inserted into the chloroplast, the expression vector will additionally contain a chloroplast-targeting sequence comprising a nucleotide sequence that encodes a chloroplast transit peptide to direct the gene product of interest to the chloroplasts. Such transit peptides are known in the art. With respect to chloroplast-targeting sequences, “operably linked” means that the nucleic acid sequence encoding a transit peptide (i.e., the chloroplast-targeting sequence) is linked to the desired coding sequence of the invention such that the two sequences are contiguous and in the same reading frame. See, for example, Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9: 104-126; Clark et al. (1989) J Biol. Chem. 264:17544-17550; Della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem. Biophys. Res. Commun. 196: 1414-1421; and Shah et al. (1986) Science 233:478-481. For example, a chloroplast transit peptide known in the art can be fused to the amino acid sequence of a PPO polypeptide of the invention by operably linking a choloroplast-targeting sequence to the 5′-end of a nucleotide sequence encoding the PPO polypeptide.

Chloroplast targeting sequences are known in the art and include the chloroplast small subunit of ribulose-1,5-bisphosphate carboxylase (Rubisco) (de Castro Silva Filho et al. (1996) Plant Mol. Biol. 30:769-780; Schnell et al. (1991) J Biol. Chem. 266(5):3335-3342); EPSPS (Archer et al. (1990) J Bioenerg. Biomemb. 22(6):789-810); tryptophan synthase (Zhao et al. (1995) J Biol. Chem. 270(11):6081-6087); plastocyanin (Lawrence et al. (1997) J Biol. Chem. 272(33):20357-20363); chorismate synthase (Schmidt et al. (1993) J Biol. Chem. 268(36):27447-27457); and the light harvesting chlorophyll a/b binding protein (LHBP) (Lamppa et al. (1988) J Biol. Chem. 263: 14996-14999). See also Von Heijne et al. (1991) Plant Mol. Biol. Rep. 9: 104-126; Clark et al. (1989) J Biol. Chem. 264: 17544-17550; Della-Cioppa et al. (1987) Plant Physiol. 84:965-968; Romer et al. (1993) Biochem Biophys. Res. Commun. 196: 1414-1421; and Shah et al. (1986) Science 233:478-481.

Methods for transformation of chloroplasts are known in the art. See, for example, Svab et al. (1990) Proc. Natl. Acad. ScL USA 87:8526-8530; Svab and Maliga (1993) Proc. Natl. Acad. Sci. USA 90:913-917; Svab and Maliga (1993) EMBO J. 12:601-606. The method relies on particle gun delivery of DNA containing a selectable marker and targeting of the DNA to the plastid genome through hom*ologous recombination. Additionally, plastid transformation can be accomplished by transactivation of a silent plastid-borne transgene by tissue-preferred expression of a nuclear-encoded and plastid-directed RNA polymerase. Such a system has been reported in McBride et al. (1994) Proc. Natl. Acad. Sci. USA 91:7301-7305.

The nucleic acids of interest to be targeted to the chloroplast may be optimized for expression in the chloroplast to account for differences in codon usage between the plant nucleus and this organelle. In this manner, the nucleic acids of interest may be synthesized using chloroplast-preferred codons. See, for example, U.S. Pat. No. 5,380,831, herein incorporated by reference.

Numerous plant transformation vectors and methods for transforming plants are available. See, for example, An, G. et al. (1986) Plant PysioL, 81:301-305; Fry, J., et al. 1987) Plant Cell Rep. 6:321-325; Block, M. (1988) Theor. Appl. Genet 0.16: 161-1 1 A; Hinchee, et al. (1990) Stadler. Genet. Symp. 2032Y2.203-2Y2; Cousins, et al. (1991) Aust. J. Plant Physiol. 18:481-494; Chee, P. P. and Slightom, J. L. (1992) Gene. 1 18:255-260; Christou, et al. (1992) Trends. Biotechnol. 10:239-246; Halluin, et al. (1992) Bio/Technol. 10:309-314; Dhir, et al. (1992) Plant Physiol. 99:81-88; Casas et al. (1993) Proc. Nat. Acad Sd. USA 90: 1 1212-1 1216; Christou, P. (1993) In Vitro Cell. Dev. Biol.-Plant; 29P. 119-124; Davies, et al. (1993) Plant Cell Rep. 12: 180-183; Dong, J. A. and Mchughen, A. (1993) Plant ScL 91: 139-148; Franklin, C. I. and Trieu, T. N. (1993) Plant. Physiol. 102: 167; Golovkin, et al. (1993) Plant ScL 90:41-52; Guo Chin ScL Bull. 38:2072-2078; Asano, et al. (1994) Plant Cell Rep. 13; Ayeres N. M. and Park, W. D. (1994) Crit. Rev. Plant. Sci. 13:219-239; Barcelo, et al. (1994) Plant. J. 5:583-592; Becker, et al. (1994) Plant. J. 5:299-307; Borkowska et al. (1994) Acta. Physiol Plant. 16:225-230; Christou, P. (1994) Agro. Food. Ind. Hi Tech. 5: 17-27; Eapen et al. (1994) Plant Cell Rep. 13:582-586; Hartman, et al. (1994) Bio-Technology 12: 919923; Ritala, et al. (1994) Plant. Mol. Biol. 24:317-325; and Wan, Y. C. and Lemaux, P. G. (1994) Plant Physiol. 104:3748.

In some embodiments, the methods of the invention involve introducing a polynucleotide construct into a plant. By “introducing” is intended presenting to the plant the polynucleotide construct in such a manner that the construct gains access to the interior of a cell of the plant. The methods of the invention do not depend on a particular method for introducing a polynucleotide construct to a plant, only that the polynucleotide construct gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotide constructs into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods. The term “introduction” or “transformation” as referred to herein further means the transfer of an exogenous polynucleotide into a host cell, irrespective of the method used for transfer. Plant tissue capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with a genetic construct of the present invention and a whole plant regenerated there from. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristem, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyl meristem). The polynucleotide may be transiently or stably introduced into a host cell and may be maintained non-integrated, for example, as a plasmid. Alternatively, it may be integrated into the host genome. The resulting transformed plant cell may then be used to regenerate a transformed plant in a manner known to persons skilled in the art.

By “stable transformation” is intended that the polynucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by descendent thereof. By “transient transformation” is intended that a polynucleotide construct introduced into a plant does not integrate into the genome of the plant.

For the transformation of plants and plant cells, the nucleotide sequences of the invention are inserted using standard techniques into any vector known in the art that is suitable for expression of the nucleotide sequences in a plant or plant cell. The selection of the vector depends on the preferred transformation technique and the target plant species to be transformed. In an embodiment of the invention, the encoding nucleotide sequence is operably linked to a plant promoter, e.g. a promoter known in the art for high-level expression in a plant cell, and this construct is then introduced into a plant cell that is susceptible to herbicides; and a transformed plant is regenerated. In some embodiments, the transformed plant is tolerant to exposure to a level of herbicides that would kill or significantly injure a plant regenerated from an untransformed cell. This method can be applied to any plant species or crops.

Methodologies for constructing plant expression vectors and introducing foreign nucleic acids into plants are generally known in the art. For example, foreign DNA can be introduced into plants, using tumor-inducing (Ti) plasmid vectors. Other methods utilized for foreign DNA delivery involve the use of PEG mediated protoplast transformation, electroporation, microinjection whiskers, and biolistics or microprojectile bombardment for direct DNA uptake. Such methods are known in the art. (U.S. Pat. No. 5,405,765 to Vasil et al.; Bilang et a (1991) Gene 100: 247-250; Scheid et al. al, (1991) MoL Gen. Genet., 228: 104-1 12; Guerche et al., (1987) Plant Science 52: 1 1 1-1 16; Neuhause et al., (1987) Theor. Appl Genet. 75: 30-36; Klein et al., (1987) Nature 327: 70-73; Howell et al., (1980) Science 208: 1265; Horsch et al., (1985) Science 227: 1229-1231; DeBlock et al., (1989) Plant Physiology 91: 694-701; Methods for Plant Molecular Biology (Weissbach and Weissbach, eds.) Academic Press, Inc. (1988) and Methods in Plant Molecular Biology (Schuler and Zielinski, eds.) Academic Press, Inc. (1989).

Other suitable methods of introducing nucleotide sequences into plant cells include microinjection as described by, e.g., Crossway et al. (1986) Biotechniques 4:320-334, electroporation as described by e.g., Riggs et al. (1986) Proc. Natl. Acad. ScL USA 83:5602-5606, Agrobacterium-mediated transformation as described by e.g., Townsend et al., U.S. Pat. No. 5,563,055, Zhao et al., U.S. Pat. No. 5,981,840, direct gene transfer as described by, e.g., Paszkowski et al. (1984) EMBO J. 3:2717-2722, and ballistic particle acceleration as described by, e.g., U.S. Pat. Nos. 4,945,050; 5,879,918; 5,886,244; and U.S. Pat. No. 5,932,782; Tomes et al. (1995) “Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment,” in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe et al. (1988) Biotechnology 6:923-926); and Led transformation (WO 00/28058). Also see, Weissinger et al., (1988) Ann. Rev. Genet. 22:421-477; Sanford et al, (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al, (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al., (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P: 175-182 (soybean); Singh et al, (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al., (1990) Biotechnology 8:736-740 (rice); Klein et al., (1988) PNAS, 85:4305-4309 (maize); Klein et al., (1988) Biotechnology 6:559-563 (maize); U.S. Pat. Nos. 5,240,855; 5,322,783; and U.S. Pat. No. 5,324,646; Tomes et al., (1995) “Direct DNA Transfer into Intact Plant Cells via Microprojectile Bombardment,” in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg (Springer-Verlag, Berlin) (maize); Klein et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm et al., (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al., (1984) Nature (London) 311:763-764; Bowen et al, U.S. Pat. No. 5,736,369 (cereals); Bytebier et al, (1987) PNAS 84:5345-5349 (Liliaceae); De Wet et al., (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al, (Longman, New York), pp. 197-209 (pollen); Kaeppler et al., (1990) Plant Cell Reports 9:415-418 and Kaeppler et al., (1992) Theor. Apph Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al., (1992) Plant Cell 4: 1495-1505 (electroporation); Li et al., (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al, (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); each of which is herein incorporated by reference.

Transgenic plants, including transgenic crop plants, are preferably produced via Agrobacterium-mediated transformation. An advantageous transformation method is the transformation in planta. To this end, it is possible, for example, to allow the agrobacteria to act on plant seeds or to inoculate the plant meristem with agrobacteria. It has proved particularly expedient in accordance with the invention to allow a suspension of transformed agrobacteria to act on the intact plant or at least on the flower primordia. The plant is subsequently grown on until the seeds of the treated plant are obtained (Clough and Bent, Plant J. (1998) 16, 735-743). Methods for Agrobacterium-mediated transformation of rice include well known methods for rice transformation, such as those described in any of the following: European patent application EP 1198985 A1, Aldemita and Hodges (Planta 199: 612-617, 1996); Chan et al. (Plant Mol Biol 22 (3): 491-506, 1993), Hiei et al. (Plant J 6 (2): 271-282, 1994), which disclosures are incorporated by reference herein as if fully set forth. In the case of corn transformation, the preferred method is as described in either Ishida et al. (Nat. Biotechnol 14(6): 745-50, 1996) or Frame et al. (Plant Physiol 129(1): 13-22, 2002), which disclosures are incorporated by reference herein as if fully set forth. Said methods are further described by way of example in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991) 205-225). The nucleic acids or the construct to be expressed is preferably cloned into a vector, which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Agrobacteria transformed by such a vector can then be used in known manner for the transformation of plants, such as plants used as a model, like Arabidopsis (Arabidopsis thaliana is within the scope of the present invention not considered as a crop plant), or crop plants such as, by way of example, tobacco plants, for example by immersing bruised leaves or chopped leaves in an agrobacterial solution and then culturing them in suitable media. The transformation of plants by means of Agrobacterium tumefaciens is described, for example, by Höfgen and Willmitzer in Nucl. Acid Res. (1988) 16, 9877 or is known inter alia from F. F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, Engineering and Utilization, eds. S. D. Kung and R. Wu, Academic Press, 1993, pp. 15-38.

One transformation method known to those of skill in the art is the dipping of a flowering plant into an Agrobacteria solution, wherein the Agrobacteria contains the PPO nucleic acid, followed by breeding of the transformed gametes. Agrobacterium mediated plant transformation can be performed using for example the GV3101(pMP90) (Koncz and Schell, 1986, Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain. Transformation can be performed by standard transformation and regeneration techniques (Deblaere et al., 1994, Nucl. Acids. Res. 13:4777-4788; Gelvin, Stanton B. and Schilperoort, Robert A, Plant Molecular Biology Manual, 2nd Ed.—Dordrecht: Kluwer Academic Publ., 1995.—in Sect., Ringbuc Zentrale Signatur: BT11-P ISBN 0-7923-2731-4; Glick, Bernard R. and Thompson, John E., Methods in Plant Molecular Biology and Biotechnology, Boca Raton: CRC Press, 1993 360 S., ISBN 0-8493-5164-2). For example, rapeseed can be transformed via cotyledon or hypocotyl transformation (Moloney et al., 1989, Plant Cell Report 8:238-242; De Block et al., 1989, Plant Physiol. 91:694-701). Use of antibiotics for Agrobacterium and plant selection depends on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker. Agrobacterium mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al., 1994, Plant Cell Report 13:282-285. Additionally, transformation of soybean can be performed using for example a technique described in European Patent No. 0424 047, U.S. Pat. No. 5,322,783, European Patent No. 0397 687, U.S. Pat. No. 5,376,543, or U.S. Pat. No. 5,169,770. Transformation of maize can be achieved by particle bombardment, polyethylene glycol mediated DNA uptake, or via the silicon carbide fiber technique. (See, for example, Freeling and Walbot “The maize handbook” Springer Verlag: New York (1993) ISBN 3-540-97826-7). A specific example of maize transformation is found in U.S. Pat. No. 5,990,387, and a specific example of wheat transformation can be found in PCT Application No. WO 93/07256.

In some embodiments, polynucleotides of the present invention may be introduced into plants by contacting plants with a virus or viral nucleic acids. Generally, such methods involve incorporating a polynucleotide construct of the invention within a viral DNA or RNA molecule. It is recognized that the polypeptides of the invention may be initially synthesized as part of a viral polyprotein, which later may be processed by proteolysis in vivo or in vitro to produce the desired recombinant polypeptide. Further, it is recognized that promoters of the invention also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotide constructs into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. Pat. Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367 and 5,316,931; herein incorporated by reference. The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et a (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved.

The present invention may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn or maize (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annu), saffiower (Carthamus tinctorius), wheat (Triticum aestivum, T. Turgidum ssp. durum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solarium tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables, ornamentals, and conifers. Preferably, plants of the present invention are crop plants (for example, sunflower, Brassica sp., cotton, sugar, beet, soybean, peanut, alfalfa, safflower, tobacco, corn, rice, wheat, rye, barley triticale, sorghum, millet, etc.).

In addition to the transformation of somatic cells, which then have to be regenerated into intact plants, it is also possible to transform the cells of plant meristems and in particular those cells which develop into gametes. In this case, the transformed gametes follow the natural plant development, giving rise to transgenic plants. Thus, for example, seeds of Arabidopsis are treated with agrobacteria and seeds are obtained from the developing plants of which a certain proportion is transformed and thus transgenic [Feldman, KA and Marks MD (1987). Mol Gen Genet 208:274-289; Feldmann K (1992). In: C Koncz, N-H Chua and J Shell, eds, Methods in Arabidopsis Research. Word Scientific, Singapore, pp. 274-2891. Alternative methods are based on the repeated removal of the inflorescences and incubation of the excision site in the center of the rosette with transformed agrobacteria, whereby transformed seeds can likewise be obtained at a later point in time (Chang (1994). Plant J. 5: 551-558; Katavic (1994). Mol Gen Genet, 245: 363-370). However, an especially effective method is the vacuum infiltration method with its modifications such as the “floral dip” method. In the case of vacuum infiltration of Arabidopsis, intact plants under reduced pressure are treated with an agrobacterial suspension [Bechthold, N (1993). C R Acad Sci Paris Life Sci, 316: 1194-11991, while in the case of the “floral dip” method the developing floral tissue is incubated briefly with a surfactant-treated agrobacterial suspension [Clough, SJ and Bent AF (1998) The Plant J. 16, 735-743]. A certain proportion of transgenic seeds are harvested in both cases, and these seeds can be distinguished from non-transgenic seeds by growing under the above-described selective conditions. In addition the stable transformation of plastids is of advantages because plastids are inherited maternally is most crops reducing or eliminating the risk of transgene flow through pollen. The transformation of the chloroplast genome is generally achieved by a process which has been schematically displayed in Klaus et al., 2004 [Nature Biotechnology 22 (2), 225-229]. Briefly the sequences to be transformed are cloned together with a selectable marker gene between flanking sequences hom*ologous to the chloroplast genome. These hom*ologous flanking sequences direct site specific integration into the plastome. Plastidal transformation has been described for many different plant species and an overview is given in Bock (2001) Transgenic plastids in basic research and plant biotechnology. J Mol Biol. 2001 Sep. 21; 312 (3):425-38 or Maliga, P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol. 21, 20-28. Further biotechnological progress has recently been reported in form of marker free plastid transformants, which can be produced by a transient co-integrated maker gene (Klaus et al., 2004, Nature Biotechnology 22(2), 225-229). The genetically modified plant cells can be regenerated via all methods with which the skilled worker is familiar. Suitable methods can be found in the abovementioned publications by S. D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer.

Generally after transformation, plant cells or cell groupings are selected for the presence of one or more markers which are encoded by plant-expressible genes co-transferred with the gene of interest, following which the transformed material is regenerated into a whole plant. To select transformed plants, the plant material obtained in the transformation is, as a rule, subjected to selective conditions so that transformed plants can be distinguished from untransformed plants. For example, the seeds obtained in the above-described manner can be planted and, after an initial growing period, subjected to a suitable selection by spraying. A further possibility consists in growing the seeds, if appropriate after sterilization, on agar plates using a suitable selection agent so that only the transformed seeds can grow into plants. Alternatively, the transformed plants are screened for the presence of a selectable marker such as the ones described above.

Following DNA transfer and regeneration, putatively transformed plants may also be evaluated, for instance using Southern analysis, for the presence of the gene of interest, copy number and/or genomic organisation. Alternatively or additionally, expression levels of the newly introduced DNA may be monitored using Northern and/or Western analysis, both techniques being well known to persons having ordinary skill in the art.

The generated transformed plants may be propagated by a variety of means, such as by clonal propagation or classical breeding techniques. For example, a first generation (or T1) transformed plant may be selfed and hom*ozygous second-generation (or T2) transformants selected, and the T2 plants may then further be propagated through classical breeding techniques. The generated transformed organisms may take a variety of forms. For example, they may be chimeras of transformed cells and non-transformed cells; clonal transformants (e.g., all cells transformed to contain the expression cassette); grafts of transformed and untransformed tissues (e.g., in plants, a transformed rootstock grafted to an untransformed scion).

Preferably, the expression of the nucleic acid in the plant results in the plant's increased resistance to herbicide as compared to a wild type variety of the plant.

In another embodiment, the invention refers to a plant, comprising a plant cell according to the present invention, wherein expression of the nucleic acid in the plant results in the plant's increased resistance to herbicide as compared to a wild type variety of the plant.

The plants described herein can be either transgenic crop plants or non-transgenic plants.

In addition to the general definition, give SUPRA, “transgenic”, “transgene” or “recombinant” means with regard to, for example, a nucleic acid sequence, an expression cassette, gene construct or a vector comprising the nucleic acid sequence or an organism transformed with the nucleic acid sequences, expression cassettes or vectors according to the invention, all those constructions brought about by recombinant methods in which either

    • (a) the nucleic acid sequences encoding proteins useful in the methods of the invention, or
    • (b) genetic control sequence(s) which is operably linked with the nucleic acid sequence according to the invention, for example a promoter, or
    • (c) a) and b)

are not located in their natural genetic environment or have been modified by recombinant methods, it being possible for the modification to take the form of, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues in order to allow for the expression of the mutated PPO of the present invention. The natural genetic environment is understood as meaning the natural genomic or chromosomal locus in the original plant or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is preferably retained, at least in part. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, especially preferably at least 1000 bp, most preferably at least 5000 bp. A naturally occurring expression cassette—for example the naturally occurring combination of the natural promoter of the nucleic acid sequences with the corresponding nucleic acid sequence encoding a polypeptide useful in the methods of the present invention, as defined above—becomes a transgenic expression cassette when this expression cassette is modified by non-natural, synthetic (“artificial”) methods such as, for example, mutagenic treatment. Suitable methods are described, for example, in U.S. Pat. No. 5,565,350 or WO 00/15815.

A transgenic plant for the purposes of the invention is thus understood as meaning, as above, that the nucleic acids of the invention are not at their natural locus in the genome of said plant, it being possible for the nucleic acids to be expressed hom*ologously or heterologously. However, as mentioned, transgenic also means that, while the nucleic acids according to the invention or used in the inventive method are at their natural position in the genome of a plant, the sequence has been modified with regard to the natural sequence, and/or that the regulatory sequences of the natural sequences have been modified. Transgenic is preferably understood as meaning the expression of the nucleic acids according to the invention at an unnatural locus in the genome, i.e. hom*ologous or, preferably, heterologous expression of the nucleic acids takes place. Preferred transgenic plants are mentioned herein. Furthermore, the term “transgenic” refers to any plant, plant cell, callus, plant tissue, or plant part, that contains all or part of at least one recombinant polynucleotide. In many cases, all or part of the recombinant polynucleotide is stably integrated into a chromosome or stable extra-chromosomal element, so that it is passed on to successive generations. For the purposes of the invention, the term “recombinant polynucleotide” refers to a polynucleotide that has been altered, rearranged, or modified by genetic engineering. Examples include any cloned polynucleotide, or polynucleotides, that are linked or joined to heterologous sequences. The term “recombinant” does not refer to alterations of polynucleotides that result from naturally occurring events, such as spontaneous mutations, or from non-spontaneous mutagenesis followed by selective breeding.

Plants containing mutations arising due to non-spontaneous mutagenesis and selective breeding are referred to herein as non-transgenic plants and are included in the present invention. In embodiments wherein the plant is transgenic and comprises multiple mutated PPO nucleic acids, the nucleic acids can be derived from different genomes or from the same genome. Alternatively, in embodiments wherein the plant is non-transgenic and comprises multiple mutated PPO nucleic acids, the nucleic acids are located on different genomes or on the same genome.

In certain embodiments, the present invention involves herbidicide-resistant plants that are produced by mutation breeding. Such plants comprise a polynucleotide encoding a mutated PPO and are tolerant to one or more PPO-inhibiting herbicides. Such methods can involve, for example, exposing the plants or seeds to a mutagen, particularly a chemical mutagen such as, for example, ethyl methanesulfonate (EMS) and selecting for plants that have enhanced tolerance to at least one or more PPO-inhibiting herbicide [see Example 1]. However, the present invention is not limited to herbicide-tolerant plants that are produced by a mutagenesis method involving the chemical mutagen EMS. Any mutagenesis method known in the art may be used to produce the herbicide-resistant plants of the present invention. Such mutagenesis methods can involve, for example, the use of any one or more of the following mutagens: radiation, such as X-rays, Gamma rays (e.g., cobalt 60 or cesium 137), neutrons, (e.g., product of nuclear fission by uranium 235 in an atomic reactor), Beta radiation (e.g., emitted from radioisotopes such as phosphorus 32 or carbon 14), and ultraviolet radiation (preferably from 250 to 290 nm), and chemical mutagens such as base analogues (e.g., 5-bromo-uracil), related compounds (e.g., 8-ethoxy caffeine), antibiotics (e.g., streptonigrin), alkylating agents (e.g., sulfur mustards, nitrogen mustards, epoxides, ethylenamines, sulfates, sulfonates, sulfones, lactones), azide, hydroxylamine, nitrous acid, or acridines. Herbicide-resistant plants can also be produced by using tissue culture methods to select for plant cells comprising herbicide-resistance mutations and then regenerating herbicide-resistant plants therefrom. See, for example, U.S. Pat. Nos. 5,773,702 and 5,859,348, both of which are herein incorporated in their entirety by reference. Further details of mutation breeding can be found in “Principals of Cultivar Development” Fehr, 1993 Macmillan Publishing Company the disclosure of which is incorporated herein by reference

Alternatively, herbicide-resistant plants according to the present invention can also be produced by using genome editing methods to select for plant cells comprising herbicide-resistance mutations and then regenerating herbicide-resistant plants therefrom. “Genome Editing” refers to a type of genetic engineering in which DNA is inserted, deleted or replaced in the genome of an organism using engineered nucleases. These nucleases are known to the skilled artisan to create site-specific double-strand breaks at desired locations in the genome. The induced double-strand breaks are repaired through nonhom*ologous end-joining or hom*ologous recombination, resulting in targeted mutations. Known in the art are currently four families of engineered nucleases which can be used for the purposes of the present invention: meganucleases, zinc finger nucleases (ZFNs), transcription activator-like effector-based nucleases (TALEN), and the CRISPR-Cas system.—For references, see, for example, Esvelt, K M. and Wang, HH. (2013) “Genome-scale engineering for systems and synthetic biology”, Mol Syst Biol. 9 (1): 641; Tan, W S. et al., (2012) “Precision editing of large animal genomes”, Adv Genet. 80: 37-97; Puchta, H. and Fauser, F. (2013) “Gene targeting in plants: 25 years later”, Int. J. Dev. Biol. 57: 629-637; Boglioli, Elsy and Richard, Magali “Rewriting the book of life: a new era in precision genome editing”, Boston Consulting Group, Retrieved Nov. 30, 2015; Method of the Year 2011. Nat Meth 9 (1), 1-1.

The plant of the present invention comprises at least one mutated PPO nucleic acid or over-expressed wild-type PPO nucleic acid, and has increased tolerance to a PPO-inhibiting herbicide as compared to a wild-type variety of the plant. It is possible for the plants of the present invention to have multiple mutated PPO nucleic acids from different genomes since these plants can contain more than one genome. For example, a plant contains two genomes, usually referred to as the A and B genomes. Because PPO is a required metabolic enzyme, it is assumed that each genome has at least one gene coding for the PPO enzyme (i.e. at least one PPO gene). As used herein, the term “PPO gene locus” refers to the position of a PPO gene on a genome, and the terms “PPO gene” and “PPO nucleic acid” refer to a nucleic acid encoding the PPO enzyme. The PPO nucleic acid on each genome differs in its nucleotide sequence from a PPO nucleic acid on another genome. One of skill in the art can determine the genome of origin of each PPO nucleic acid through genetic crossing and/or either sequencing methods or exonuclease digestion methods known to those of skill in the art.

The present invention includes plants comprising one, two, three, or more mutated PPO alleles, wherein the plant has increased tolerance to a PPO-inhibiting herbicide as compared to a wild-type variety of the plant. The mutated PPO alleles can comprise a nucleotide sequence selected from the group consisting of a polynucleotide as defined in SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128 or 130, or a variant or derivative thereof, a polynucleotide encoding a polypeptide as defined in SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117 or 129, or a variant or derivative, hom*ologue, orthologue, paralogue thereof, a polynucleotide comprising at least 60 consecutive nucleotides of any of the aforementioned polynucleotides; and a polynucleotide complementary to any of the aforementioned polynucleotides.

“Alleles” or “allelic variants” are alternative forms of a given gene, located at the same chromosomal position. Allelic variants encompass Single Nucleotide Polymorphisms (SNPs), as well as Small Insertion/Deletion Polymorphisms (INDELs). The size of INDELs is usually less than 100 bp. SNPs and INDELs form the largest set of sequence variants in naturally occurring polymorphic strains of most organisms

The term “variety” refers to a group of plants within a species defined by the sharing of a common set of characteristics or traits accepted by those skilled in the art as sufficient to distinguish one cultivar or variety from another cultivar or variety. There is no implication in either term that all plants of any given cultivar or variety will be genetically identical at either the whole gene or molecular level or that any given plant will be hom*ozygous at all loci. A cultivar or variety is considered “true breeding” for a particular trait if, when the true-breeding cultivar or variety is self-pollinated, all of the progeny contain the trait. The terms “breeding line” or “line” refer to a group of plants within a cultivar defined by the sharing of a common set of characteristics or traits accepted by those skilled in the art as sufficient to distinguish one breeding line or line from another breeding line or line. There is no implication in either term that all plants of any given breeding line or line will be genetically identical at either the whole gene or molecular level or that any given plant will be hom*ozygous at all loci. A breeding line or line is considered “true breeding” for a particular trait if, when the true-breeding line or breeding line is self-pollinated, all of the progeny contain the trait. In the present invention, the trait arises from a mutation in a PPO gene of the plant or seed.

The herbicide-resistant plants of the invention that comprise polynucleotides encoding mutated PPO polypeptides also find use in methods for increasing the herbicide-resistance of a plant through conventional plant breeding involving sexual reproduction. The methods comprise crossing a first plant that is a herbicide-resistant plant of the invention to a second plant that may or may not be resistant to the same herbicide or herbicides as the first plant or may be resistant to different herbicide or herbicides than the first plant. The second plant can be any plant that is capable of producing viable progeny plants (i.e., seeds) when crossed with the first plant. Typically, but not necessarily, the first and second plants are of the same species. The methods can optionally involve selecting for progeny plants that comprise the mutated PPO polypeptides of the first plant and the herbicide resistance characteristics of the second plant. The progeny plants produced by this method of the present invention have increased resistance to a herbicide when compared to either the first or second plant or both. When the first and second plants are resistant to different herbicides, the progeny plants will have the combined herbicide tolerance characteristics of the first and second plants. The methods of the invention can further involve one or more generations of backcrossing the progeny plants of the first cross to a plant of the same line or genotype as either the first or second plant. Alternatively, the progeny of the first cross or any subsequent cross can be crossed to a third plant that is of a different line or genotype than either the first or second plant.

The present invention also provides plants, plant organs, plant tissues, plant cells, seeds, and non-human host cells that are transformed with the at least one polynucleotide molecule, expression cassette, or transformation vector of the invention. Such transformed plants, plant organs, plant tissues, plant cells, seeds, and non-human host cells have enhanced tolerance or resistance to at least one herbicide, at levels of the herbicide that kill or inhibit the growth of an untransformed plant, plant tissue, plant cell, or non-human host cell, respectively. Preferably, the transformed plants, plant tissues, plant cells, and seeds of the invention are Arabidopsis thaliana and crop plants.

In another embodiment, the invention refers to a seed produced by a transgenic plant comprising a plant cell of the present invention, wherein the seed is true breeding for an increased resistance to a herbicide as compared to a wild type variety of the seed.

In other aspects, herbicide-tolerant plants of the present invention can be employed as herbicide-tolerance trait donor lines for development, as by traditional plant breeding, to produce other varietal and/or hybrid crops containing such trait or traits. All such resulting variety or hybrids crops, containing the ancestral herbicide-tolerance trait or traits can be referred to herein as progeny or descendant of the ancestral, herbicide-tolerant line(s).

In other embodiments, the present invention provides a method for producing a herbicide-tolerant plant. The method comprises: crossing a first herbicide-tolerant plant with a second plant to produce a herbicide-tolerant progeny plant, wherein the first plant and the progeny plant comprise in at least some of their cells a polynucleotide operably linked to a promoter operable in plant cells, the recombinant polynucleotide being effective in the cells of the first plant to express a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

Traditional plant breeding might be employed whereby the herbicide-tolerant trait is introduced in the progeny plant resulting therefrom. In one embodiment, the present invention provides a method for producing a herbicide-tolerant progeny plant, the method comprising: crossing a parent plant with a herbicide-tolerant plant to introduce the herbicide-tolerance characteristics of the herbicide-tolerant plant into the germplasm of the progeny plant, wherein the progeny plant has increased tolerance to the herbicides relative to the parent plant. In other embodiments, the method further comprises the step of introgressing the herbicide-tolerance characteristics through traditional plant breeding techniques to obtain a descendent plant having the herbicide-tolerance characteristics.

In other aspects, plants of the invention include those plants which, in addition to being tolerant to PPO-inhibiting herbicides, have been subjected to further genetic modifications by breeding, mutagenesis or genetic engineering, e.g. have been rendered tolerant to applications of specific other classes of herbicides, such as AHAS inhibitors; auxinic herbicides; bleaching herbicides such as hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; EPSPS inhibitors such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i.e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering, Thus, herbicide-tolerant plants of the invention can be made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as HPPD inhibitors, AHAS inhibitors, or ACCase inhibitors. These herbicide resistance technologies are, for example, described in Pest Management Science (at volume, year, page): 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Science 57, 2009, 108; Australian Journal of Agricultural Research 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. For example, herbicide-tolerant plants of the invention, in some embodiments, may be tolerant to ACCase inhibitors, such as “dims” (e.g., cycloxydim, sethoxydim, clethodim, or tepraloxydim), “fops” (e.g., clodinafop, diclofop, fluazifop, haloxyfop, or quizalofop), and “dens” (such as pinoxaden); to auxinic herbicides, such as dicamba; to EPSPS inhibitors, such as glyphosate; to cellulose biosynthesis inhibitors; and to GS inhibitors, such as glufosinate.

In addition to these classes of inhibitors, herbicide-tolerant plants of the invention may also be tolerant to herbicides having other modes of action, for example, chlorophyll/carotenoid pigment inhibitors, cell membrane disrupters, photosynthesis inhibitors, cell division inhibitors, root inhibitors, shoot inhibitors, and combinations thereof.

Such tolerance traits may be expressed, e.g.: as mutant or wildtype HPPD proteins, as mutant or wildtype PPO proteins, as mutant AHASL proteins, mutant ACCase proteins, mutant EPSPS proteins, or mutant glutamine synthetase proteins; or as mutant native, inbred, or transgenic aryloxyalkanoate dioxygenase (AAD or DHT), haloarylnitrilase (BXN), 2,2-dichloropropionic acid dehalogenase (DEH), glyphosate-N-acetyltransferase (GAT), glyphosate decarboxylase (GDC), glyphosate oxidoreductase (GOX), glutathione-S-transferase (GST), phosphinothricin acetyltransferase (PAT or bar), or CYP450s proteins having an herbicide-degrading activity. Herbicide-tolerant plants hereof can also be stacked with other traits including, but not limited to, pesticidal traits such as Bt Cry and other proteins having pesticidal activity toward coleopteran, lepidopteran, nematode, or other pests; nutrition or nutraceutical traits such as modified oil content or oil profile traits, high protein or high amino acid concentration traits, and other trait types known in the art.

Furthermore, in other embodiments, herbicide-tolerant plants are also covered which are, by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such characteristics, rendered able to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as [delta]-endotoxins, e.g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(bI) or Cry9c; vegetative insecticidal proteins (VIP), e.g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e.g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such streptomycete toxins; plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxy-steroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helico*kinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e.g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e.g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).

In some embodiments, expression of one or more protein toxins (e.g., insecticidal proteins) in the herbicide-tolerant plants is effective for controlling organisms that include, for example, members of the classes and orders: Coleoptera such as the American bean weevil Acanthoscelides obtectus; the leaf beetle Agelastica alni; click beetles (Agriotes lineatus, Agriotes obscurus, Agriotes bicolor); the grain beetle Ahasverus advena; the summer schafer Amphimallon solstitialis; the furniture beetle Anobium punctatum; Anthonomus spp. (weevils); the Pygmy mangold beetle Atomaria linearis; carpet beetles (Anthrenus spp., Attagenus spp.); the cowpea weevil Callosobruchus maculates; the fried fruit beetle Carpophilus hemipterus; the cabbage seedpod weevil Ceutorhynchus assimilis; the rape winter stem weevil Ceutorhynchus picitarsis; the wireworms Conoderus vespertinus and Conoderus falli; the banana weevil Cosmopolites sordidus; the New Zealand grass grub Costelytra zealandica; the June beetle Cotinis nitida; the sunflower stem weevil Cylindrocopturus adspersus; the larder beetle Dermestes lardarius; the corn rootworms Diabrotica virgifera, Diabrotica virgifera virgifera, and Diabrotica barberi; the Mexican bean beetle Epilachna varivestis; the old house borer Hylotropes bajulus; the lucerne weevil Hypera postica; the shiny spider beetle Gibbium psylloides; the cigarette beetle Lasioderma serricorne; the Colorado potato beetle Leptinotarsa decemlineata; Lyctus beetles {Lyctus spp., the pollen beetle Meligethes aeneus; the common co*ckshafer Melolontha melolontha; the American spider beetle Mezium americanum; the golden spider beetle Niptus hololeuc s; the grain beetles Oryzaephilus surinamensis and Oryzaephilus mercator; the black vine weevil Otiorhynchus sulcatus; the mustard beetle Phaedon cochleariae, the crucifer flea beetle Phyllotreta cruciferae; the striped flea beetle Phyllotreta striolata; the cabbage steam flea beetle Psylliodes chrysocephala; Ptinus spp. (spider beetles); the lesser grain borer Rhizopertha dominica; the pea and been weevil Sitona lineatus; the rice and granary beetles Sitophilus oryzae and Sitophilus granaries; the red sunflower seed weevil Smicronyx fulvus; the drugstore beetle Stegobium paniceum; the yellow mealworm beetle Tenebrio molitor, the flour beetles Tribolium castaneum and Tribolium confusum; warehouse and cabinet beetles {Trogoderma spp.); the sunflower beetle Zygogramma exclamationis; Dermaptera (earwigs) such as the European earwig Forficula auricularia and the striped earwig Labidura riparia; Dictyoptera such as the oriental co*ckroach Blatta orientalis; the greenhouse millipede Oxidus gracilis; the beet fly Pegomyia betae; the frit fly Oscinella frit; fruit flies (Dacus spp., Drosophila spp.); Isoptera (termites) including species from the familes Hodotermitidae, Kalotermitidae, Mastotermitidae, Rhinotermitidae, Serritermitidae, Termitidae, Termopsidae; the tarnished plant bug Lygus lineolaris; the black bean aphid Aphis fabae; the cotton or melon aphid Aphis gossypii; the green apple aphid Aphis pomi; the citrus spiny whitefly Aleurocanthus spiniferus; the sweet potato whitefly Bemesia tabaci; the cabbage aphid Brevicoryne brassicae; the pear psylla Cacopsylla pyricola; the currant aphid Cryptomyzus ribis; the grape phylloxera Daktulosphaira vitifoliae; the citrus psylla Diaphorina citri; the potato leafhopper Empoasca fabae; the bean leafhopper Empoasca solana; the vine leafhopper Empoasca vitis; the woolly aphid Eriosoma lanigerum; the European fruit scale Eulecanium corni; the mealy plum aphid Hyalopterus arundinis; the small brown planthopper Laodelphax striatellus; the potato aphid Macrosiphum euphorbiae; the green peach aphid Myzus persicae; the green rice leafhopper Nephotettix cinticeps; the brown planthopper Nilaparvata lugens; the hop aphid Phorodon humuli; the bird-cherry aphid Rhopalosiphum padi; the grain aphid Sitobion avenae; Lepidoptera such as Adoxophyes orana (summer fruit tortrix moth); Archips podana (fruit tree tortrix moth); Bucculatrix pyrivorella (pear leafminer); Bucculatrix thurberiella (cotton leaf perforator); Bupalus piniarius (pine looper); Carpocapsa pomonella (codling moth); Chilo suppressalis (striped rice borer); Choristoneura fumiferana (eastern spruce budworm); Cochylis hospes (banded sunflower moth); Diatraea grandiosella (southwestern corn borer); Eupoecilia ambiguella (European grape berry moth); Helicoverpa armigera (cotton bollworm); Helicoverpa zea (cotton bollworm); Heliothis vires cens (tobacco budworm), Homeosoma electellum (sunflower moth); hom*ona magnanima (oriental tea tree tortrix moth); Lithocolletis blancardella (spotted tentiform leafminer); Lymantria dispar (gypsy moth); Malacosoma neustria (tent caterpillar); Mamestra brassicae (cabbage armyworm); Mamestra configurata (Bertha armyworm); Operophtera brumata (winter moth); Ostrinia nubilalis (European corn borer), Panolis flammea (pine beauty moth), Phyllocnistis citrella (citrus leafminer); Pieris brassicae (cabbage white butterfly); Rachiplusia ni (soybean looper); Spodoptera exigua (beet armywonn); Spodoptera littoralis (cotton leafworm); Sylepta derogata (cotton leaf roller); Trichoplusia ni (cabbage looper); Orthoptera such as the common cricket Acheta domesticus, tree locusts (Anacridium spp.), the migratory locust Locusta migratoria, the twostriped grasshopper Melanoplus bivittatus, the differential grasshopper Melanoplus differ entialis, the redlegged grasshopper Melanoplus femurrubrum, the migratory grasshopper Melanoplus sanguinipes, the northern mole cricket Neocurtilla hexadectyla, the red locust Nomadacris septemfasciata, the shortwinged mole cricket Scapteriscus abbreviatus, the southern mole cricket Scapteriscus borellii, the tawny mole cricket Scapteriscus vicinus, and the desert locust Schistocerca gregaria; Symphyla such as the garden symphylan Scutigerella immaculata; Thysanoptera such as the tobacco thrips Frankliniella fusca, the flower thrips Frankliniella intonsa, the western flower thrips Frankliniella occidentalism the cotton bud thrips Frankliniella schultzei, the banded greenhouse thrips Hercinothrips femoralis, the soybean thrips Neohydatothrips variabilis, Kelly's citrus thrips Pezothrips kellyanus, the avocado thrips Scirtothrips perseae, the melon thrips Thrips palmi, and the onion thrips Thrips tabaci; and the like, and combinations comprising one or more of the foregoing organisms.

In some embodiments, expression of one or more protein toxins (e.g., insecticidal proteins) in the herbicide-tolerant plants is effective for controlling flea beetles, i.e. members of the flea beetle tribe of family Chrysomelidae, preferably against Phyllotreta spp., such as Phyllotreta cruciferae and/or Phyllotreta triolata. In other embodiments, expression of one or more protein toxins (e.g., insecticidal proteins) in the herbicide-tolerant plants is effective for controlling cabbage seedpod weevil, the Bertha armyworm, Lygus bugs, or the diamondback moth.

Furthermore, in one embodiment, herbicide-tolerant plants are also covered which are, e.g. by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such traits, rendered able to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. The methods for producing such genetically modified plants are generally known to the person skilled in the art.

Furthermore, in another embodiment, herbicide-tolerant plants are also covered which are, e.g. by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such traits, rendered able to synthesize one or more proteins to increase the productivity (e.g. oil content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.

Furthermore, in other embodiments, herbicide-tolerant plants are also covered which are, e.g. by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such traits, altered to contain a modified amount of one or more substances or new substances, for example, to improve human or animal nutrition, e.g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e.g. Nexera® rape, Dow Agro Sciences, Canada).

Furthermore, in some embodiments, herbicide-tolerant plants are also covered which are, e.g. by the use of recombinant DNA techniques and/or by breeding and/or otherwise selected for such traits, altered to contain increased amounts of vitamins and/or minerals, and/or improved profiles of nutraceutical compounds.

In one embodiment, herbicide-tolerant plants of the present invention, relative to a wild-type plant, comprise an increased amount of, or an improved profile of, a compound selected from the group consisting of: glucosinolates (e.g., glucoraphanin (4-methylsulfinylbutyl-glucosinolate), sulforaphane, 3-indolylmethyl-glucosinolate(glucobrassicin), I-methoxy-3-indolylmethyl-glucosinolate (neoglucobrassicin)); phenolics (e.g., flavonoids (e.g., quercetin, kaempferol), hydroxycinnamoyl derivatives (e.g., 1,2,2′-trisinapoylgentiobiose, 1,2-diferuloylgentiobiose, I,2′-disinapoyl-2-feruloylgentiobiose, 3-0-caffeoyl-quinic (neochlorogenic acid)); and vitamins and minerals (e.g., vitamin C, vitamin E, carotene, folic acid, niacin, riboflavin, thiamine, calcium, iron, magnesium, potassium, selenium, and zinc).

In another embodiment, herbicide-tolerant plants of the present invention, relative to a wild-type plant, comprise an increased amount of, or an improved profile of, a compound selected from the group consisting of: progoitrin; isothiocyanates; indoles (products of glucosinolate hydrolysis); glutathione; carotenoids such as beta-carotene, lycopene, and the xanthophyll carotenoids such as lutein and zeaxanthin; phenolics comprising the flavonoids such as the flavonols (e.g. quercetin, rutin), the flavans/tannins (such as the procyanidins comprising coumarin, proanthocyanidins, catechins, and anthocyanins); flavones; phytoestrogens such as coumestans, lignans, resveratrol, isoflavones e.g. genistein, daidzein, and glycitein; resorcyclic acid lactones; organosulphur compounds; phytosterols; terpenoids such as carnosol, rosmarinic acid, glycyrrhizin and saponins; chlorophyll; chlorphyllin, sugars, anthocyanins, and vanilla.

In other embodiments, herbicide-tolerant plants of the present invention, relative to a wild-type plant, comprise an increased amount of, or an improved profile of, a compound selected from the group consisting of: vincristine, vinblastine, taxanes (e.g., taxol (pacl*taxel), baccatin III, 10-desacetylbaccatin III, 10-desacetyl taxol, xylosyl taxol, 7-epitaxol, 7-epibaccatin III, 10-desacetylcephalomannine, 7-epicephalomannine, taxotere, cephalomannine, xylosyl cephalomannine, taxagifine, 8-benxoyloxy taxagifine, 9-acetyloxy taxusin, 9-hydroxy taxusin, taiwanxam, taxane Ia, taxane Ib, taxane Ic, taxane Id, GMP pacl*taxel, 9-dihydro 13-acetylbaccatin III, 10-desacetyl-7-epitaxol, tetrahydrocannabinol (THC), cannabidiol (CBD), genistein, diadzein, codeine, morphine, quinine, shikonin, ajmalacine, serpentine, and the like.

In other aspects, a method for treating a plant of the present invention is provided.

In some embodiments, the method comprises contacting the plant with an agronomically acceptable composition. In one embodiment, the agronomically acceptable composition comprises an auxinic herbicide A. I.

In another aspect, the present invention provides a method for preparing a descendent seed. The method comprises planting a seed of or capable of producing a plant of the present invention. In one embodiment, the method further comprises growing a descendent plant from the seed; and harvesting a descendant seed from the descendent plant. In other embodiments, the method further comprises applying a herbicides herbicidal composition to the descendent plant.

In another embodiment, the invention refers to harvestable parts of the transgenic plant according to the present invention. Preferably, the harvestable parts comprise the PPO nucleic acid or PPO protein of the present invention. The harvestable parts may be seeds, roots, leaves and/or flowers comprising the PPO nucleic acid or PPO protein or parts thereof. Preferred parts of soy plants are soy beans comprising the PPO nucleic acid or PPO protein.

In another embodiment, the invention refers to products derived from a transgenic plant according to the present invention, parts thereof or harvestable parts thereof. A preferred plant product is fodder, seed meal, oil, or seed-treatment-coated seeds.

Preferably, the meal and/or oil comprise the PPO nucleic acids or PPO proteins.

In another embodiment, the invention refers to a method for the production of a product, which method comprises

    • a) growing the plants of the invention or obtainable by the methods of invention and
    • b) producing said product from or by the plants of the invention and/or parts, e.g. seeds, of these plants.

In a further embodiment the method comprises the steps

    • a) growing the plants of the invention,
    • b) removing the harvestable parts as defined above from the plants and
    • c) producing said product from or by the harvestable parts of the invention.

The product may be produced at the site where the plant has been grown, the plants and/or parts thereof may be removed from the site where the plants have been grown to produce the product. Typically, the plant is grown, the desired harvestable parts are removed from the plant, if feasible in repeated cycles, and the product made from the harvestable parts of the plant. The step of growing the plant may be performed only once each time the methods of the invention is performed, while allowing repeated times the steps of product production e.g. by repeated removal of harvestable parts of the plants of the invention and if necessary further processing of these parts to arrive at the product. It is also possible that the step of growing the plants of the invention is repeated and plants or harvestable parts are stored until the production of the product is then performed once for the accumulated plants or plant parts. Also, the steps of growing the plants and producing the product may be performed with an overlap in time, even simultaneously to a large extend or sequentially. Generally the plants are grown for some time before the product is produced.

In one embodiment the products produced by said methods of the invention are plant products such as, but not limited to, a foodstuff, feedstuff, a food supplement, feed supplement, fiber, cosmetic and/or pharmaceutical. Foodstuffs are regarded as compositions used for nutrition and/or for supplementing nutrition. Animal feedstuffs and animal feed supplements, in particular, are regarded as foodstuffs.

In another embodiment the inventive methods for the production are used to make agricultural products such as, but not limited to, plant extracts, proteins, amino acids, carbohydrates, fats, oils, polymers, vitamins, and the like.

It is possible that a plant product consists of one or more agricultural products to a large extent.

As described above, the present invention provides nucleic acids, polypeptides, conferring tolerance of plants to herbicides.

Generally, the term “herbicide” is used herein to mean an active ingredient that kills, controls or otherwise adversely modifies the growth of plants. The preferred amount or concentration of the herbicide is an “effective amount” or “effective concentration.” By “effective amount” and “effective concentration” is intended an amount and concentration, respectively, that is sufficient to kill or inhibit the growth of a similar, wild-type, plant, plant tissue, plant cell, or host cell, but that said amount does not kill or inhibit as severely the growth of the herbicide-resistant plants, plant tissues, plant cells, and host cells of the present invention. Typically, the effective amount of a herbicide is an amount that is routinely used in agricultural production systems to kill weeds of interest. Such an amount is known to those of ordinary skill in the art. Herbicidal activity is exhibited by herbicides useful for the the present invention when they are applied directly to the plant or to the locus of the plant at any stage of growth or before planting or emergence. The effect observed depends upon the plant species to be controlled, the stage of growth of the plant, the application parameters of dilution and spray drop size, the particle size of solid components, the environmental conditions at the time of use, the specific compound employed, the specific adjuvants and carriers employed, the soil type, and the like, as well as the amount of chemical applied. These and other factors can be adjusted as is known in the art to promote non-selective or selective herbicidal action. Generally, it is preferred to apply the herbicide postemergence to relatively immature undesirable vegetation to achieve the maximum control of weeds.

By a “herbicide-tolerant” or “herbicide-resistant” plant, it is intended that a plant that is tolerant or resistant to at least one herbicide at a level that would normally kill, or inhibit the growth of, a normal or wild-type plant. By “herbicide-tolerant wildtype or mutated PPO protein” or “herbicide-resistant wildtype or mutated PPO protein”, it is intended that such a PPO protein displays higher PPO activity, relative to the PPO activity of a wild-type PPO protein, when in the presence of at least one herbicide that is known to interfere with PPO activity and at a concentration or level of the herbicide that is known to inhibit the PPO activity of the wild-type mutated PPO protein. Furthermore, the PPO activity of such a herbicide-tolerant or herbicide-resistant mutated PPO protein may be referred to herein as “herbicide-tolerant” or “herbicide-resistant” PPO activity

Examples of herbicides which can be used according to the present invention, i.e. to which the plants according to the present invention are tolerant/resistant to, are compounds known to the skilled artisan as PPO inhibiting herbicides. Examples of PPO inhibiting herbicides are described in detail hereinafter.

Generally, if the PPO-inhibiting herbicides (also referred to as compounds A) and/or the herbicidal compounds B as described herein, which can be employed in the context of the present invention, are capable of forming geometrical isomers, for example E/Z isomers, it is possible to use both, the pure isomers and mixtures thereof, in the compositions useful for the present the invention. If the PPO-inhibiting herbicides A and/or the herbicidal compounds B as described herein have one or more centers of chirality and, as a consequence, are present as enantiomers or diastereomers, it is possible to use both, the pure enantiomers and diastereomers and their mixtures, in the compositions according to the invention. If the PPO-inhibiting herbicides A and/or the herbicidal compounds B as described herein have ionizable functional groups, they can also be employed in the form of their agriculturally acceptable salts. Suitable are, in general, the salts of those cations and the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the activity of the active compounds. Preferred cations are the ions of the alkali metals, preferably of lithium, sodium and potassium, of the alkaline earth metals, preferably of calcium and magnesium, and of the transition metals, preferably of manganese, copper, zinc and iron, further ammonium and substituted ammonium in which one to four hydrogen atoms are replaced by C1-C4-alkyl, hydroxy-C1-C4-alkyl, C1-C4-alkoxy-C1-C4-alkyl, hydroxy-C1-C4-alkoxy-C1-C4-alkyl, phenyl or benzyl, preferably ammonium, methylammonium, isopropylammonium, dimethylammonium, diisopropylammonium, trimethylammonium, heptylammonium, dodecylammonium, tetradecylammonium, tetramethylammonium, tetraethylammonium, tetrabutylammonium, 2-hydroxyethyl-ammonium (olamine salt), 2-(2-hydroxyeth-1-oxy)eth-1-ylammonium (diglycolamine salt), di(2-hydroxyeth-1-yl)ammonium (diolamine salt), tris(2-hydroxyethyl)ammonium (trolamine salt), tris(2-hydroxypropyl)ammonium, benzyltrimethylammonium, benzyltriethylammonium, N,N,N-trimethylethanolammonium (choline salt), furthermore phosphonium ions, sulfonium ions, preferably tri(C1-C4-alkyl)sulfonium, such as trimethylsulfonium, and sulfoxonium ions, preferably tri(C1-C4-alkyl)sulfoxonium, and finally the salts of polybasic amines such as N,N-bis-(3-aminopropyl)methylamine and diethylenetriamine. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, iodide, hydrogensulfate, methylsulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and also the anions of C1-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate.

The PPO-inhibiting herbicides A and/or the herbicidal compounds B as described herein having a carboxyl group can be employed in the form of the acid, in the form of an agriculturally suitable salt as mentioned above or else in the form of an agriculturally acceptable derivative, for example as amides, such as mono- and di-C1-C6-alkylamides or arylamides, as esters, for example as allyl esters, propargyl esters, C1-C10-alkyl esters, alkoxyalkyl esters, tefuryl ((tetrahydrofuran-2-yl)methyl) esters and also as thioesters, for example as C1-C10-alkylthio esters. Preferred mono- and di-C1-C6-alkylamides are the methyl and the dimethylamides. Preferred arylamides are, for example, the anilides and the 2-chloroanilides. Preferred alkyl esters are, for example, the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, mexyl (1-methylhexyl), meptyl (1-methylheptyl), heptyl, octyl or isooctyl (2-ethylhexyl) esters. Preferred C1-C4-alkoxy-C1-C4-alkyl esters are the straight-chain or branched C1-C4-alkoxy ethyl esters, for example the 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl (butotyl), 2-butoxypropyl or 3-butoxypropyl ester. An example of a straight-chain or branched C1-C10-alkylthio ester is the ethylthio ester.

Examples of PPO inhibiting herbicides which can be used according to the present invention are acifluorfen, acifluorfen-sodium, aclonifen, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumiclorac-pentyl, flumioxazin, fluoroglycofen, fluoroglycofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil, chlornitrofen, flumipropyn, fluoronitrofen, flupropacil, furyloxyfen, nitrofluorfen, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), N-ethyl-3-2,6-dichloro-4-trifluoro-methylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione (CAS 451484-50-7), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione (CAS 1300118-96-0), 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione, methyl (E)-4-[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-enoate [CAS 948893-00-3], 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4), and uracils of formula III

    • wherein
    • R30 and R31 independently of one another are F, CI or CN;
    • R32 is O or S;
    • R33 is H, F, CI, CH3 or OCH3;
    • R34 is CH or N;
    • R35 is O or S;
    • R36 is H, CN, CH3, CF3, OCH3, OC2H5, SCH3, SC2H5, (CO)OC2H5 or CH2R38, wherein R38 is F, Cl, OCH3, SCH3, SC2H5, CH2F, CH2Br or CH2OH;
    • and
    • R37 is (C1-C6-alkyl)amino, (C1-C6-dialkyl)amino, (NH)OR39, OH, OR40 or SR40 wherein R31 is CH3, C2H5 or phenyl; and
      • R40 is independently of one another C1-C6-alkyl, C2-C6-alkenyl, C3-C6-alkynyl, C1-C6-haloalkyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, C2-C6-cyanoalkyl, C1-C4-alkoxy-carbonyl-C1-C4-alkyl, C1-C4-alkyl-carbonyl-amino, C1-C6-alkylsulfinyl-C1-C6-alkyl, C1-C6-alkyl-sulfonyl-C1-C6-alkyl, C1-C6-dialkoxy-C1-C6-alkyl, C1-C6-alkyl-carbonyloxy-C1-C6-alkyl, phenyl-carbonyl-C1-C6-alkyl, tri(C1-C3-alkyl)-silyl-C1-C6-alkyl, tri(C1-C3-alkyl)-silyl-C1-C6-alkenyl, tri(C1-C3-alkyl)-silyl-C1-C6-alkynyl, tri(C1-C3-alkyl)-silyl-C1-C6-alkoxy-C1-C6-alkyl, dimethylamino, tetrahydropyranyl, tetra-hydrofuranyl-C1-C3-alkyl, phenyl-C1-C6-alkoxy-C1-C6-alkyl, phenyl-C1-C3-alkyl, pyridyl-C1-C3-alkyl, pyridyl, phenyl,
        • which pyridyls and phenyls independently of one another are substituted by one to five substituents selected from the group consisting of halogen, C1-C3-alkyl or C1-C2-haloalkyl;
      • C3-C6-cycloalkyl or C3-C6-cycloalkyl-C1-C4-alkyl,
        • which cycloalkyls independently of one another are unsubstituted or substituted by one to five substituents selected from the group consisting of halogen, C1-C3-alkyl and C1-C2-haloalkyl;
    • including their agriculturally acceptable alkali metal salts or ammonium salts.

Preferred PPO-inhibiting herbicides that can be used according to the present invention are:

Acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, pyraflufen-ethyl, saflufenacil, sulfentrazone, tiafenacil, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione (CAS 451484-50-7), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione (CAS 1300118-96-0); 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione (CAS 1304113-05-0), 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4)

uracils of formula III.1 (corresponding to uracils of formula III, wherein R30 is F, R31 is Cl, R32 is O; R33 is H; R34 is CH; R35 is O and R37 is OR40)

    • wherein
    • R36 is OCH3, OC2H, SCH3 or SC2H5;
    • and
    • R40 is C1-C6-alkyl, C2-C6-alkenyl, C3-C6-alkynyl, C1-C6-haloalkyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C3-cyanoalkyl, phenyl-C1-C3-alkyl, pyridyl-C1-C3-alkyl, C3-C6-cycloalkyl or C3-C6-cycloalkyl-C1-C4-alkyl,
      • which cycloalkyls are unsubstituted or substituted by one to five substituents selected from the group consisting of halogen, C1-C3-alkyl and C1-C2-haloalkyl;

and

uracils of formula III.2 (corresponding to uracils of formula III, wherein R30 is F; R31 is Cl; R32 is O; R33 is H; R34 is N; R35 is O and R31 is OR40 with R40 is C1-C6-alkyl)

Particularly preferred PPO-inhibiting herbicides that can be used according to the present invention are:

acifluorfen, acifluorfen-sodium, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, tiafenacil, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione (CAS 451484-50-7), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), and 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione (CAS 1300118-96-0), 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione (CAS 1304113-05-0),

uracils of formula III.1.1 (corresponding to uracils of formula III, wherein R30 is F, R31 is Cl, R32 is O; R33 is H; R34 is CH; R35 is O, R36 is OCH3 and R31 is OR40)

    • wherein
    • R40 is C1-C6-alkyl, C2-C6-alkenyl, C3-C6-alkynyl, C1-C6-haloalkyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C3-cyanoalkyl, phenyl-C1-C3-alkyl, pyridyl-C1-C3-alkyl, C3-C6-cycloalkyl or C3-C6-cycloalkyl-C1-C4-alkyl,
      • which cycloalkyls are unsubstituted or substituted by one to five substituents selected from the group consisting of halogen, C1-C3-alkyl and C1-C2-haloalkyl;
    • is preferably CH3, CH2CH2OC2H5, CH2CHF2, cyclohexyl, (1-methylcyclopropyl)methyl or CH2(pyridine-4-yl);

uracils of formula III.2.1 (corresponding to uracils of formula III, wherein R30 is F; R31 is Cl; R32 is O; R33 is H; R34 is N; R35 is O and R31 is OR40 with R40 is CH3)

and

uracils of formula III.2.2 (corresponding to uracils of formula III, wherein R30 is F; R31 is Cl; R32 is O; R33 is H; R34 is N; R35 is O and R37 is OR40 with R40 is C2H5)

Especially preferred PPO-inhibiting herbicides are the PPO-inhibiting herbicides.1 to A.14 listed below in table A:

TABLE A
B.1acifluorfen
B.2butafenacil
B.3carfentrazone-ethyl
B.4cinidon-ethyl
B.5flumioxazin
B.6fluthiacet-methyl
B.7fomesafen
B.8lactofen
B.9oxadiargyl
B.10oxyfluorfen
B.11saflufenacil
B.12sulfentrazone
B.13ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-
2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-
pyridyloxy]acetate (CAS 353292-31-6)
B.141,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-
3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-
triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin)
B.15Tiafenacil

Other preferred PPO-inhibiting herbicides include those disclosed in WO2016/120116, the content of which is herein incorporated by reference in its entirety.

Other preferred PPO-inhibiting herbicide include those disclosed in WO2017/202768, the content of which is herein incorporated by reference in its entirety.

More specifically, said PPO-inhibiting herbicide disclosed in WO2017/202768 refer to a a uracilpyridine of formula (I)

    • wherein the substituents have the following meanings:
    • R1 hydrogen, NH2, C1-C6-alkyl or C3-C6-alkynyl;
    • R2 hydrogen, C1-C6-alkyl or C1-C6-haloalkyl;
    • R3 hydrogen or C1-C6-alkyl;
    • R4 H or halogen;
    • R5 halogen, CN, NO2, NH2, CF3 or C(═S)NH2;
    • R6 H, halogen, CN, C1-C3-alkyl, C1-C3-haloalkyl, C1-C3-alkoxy, C1-C3-haloalkoxy, C1-C3-alkylthio, (C1-C3-alkyl)amino, di(C1-C3-alkyl)amino, C1-C3-alkoxy-C1-C3-alkyl, C1-C3-alkoxycarbonyl;
    • R7 H, halogen, C1-C3-alkyl, C1-C3-alkoxy;
    • R8 OR9, SR9, NR10R11, NR9OR9, NR9S(O)2R10 or NR9S(O)2NR10R11, wherein
      • R9 is hydrogen, C1-C6-alkyl, C3-C6-alkenyl, C3-C6-alkynyl, C1-C6-haloalkyl, C3-C6-haloalkenyl, C3-C6-haloalkynyl, C1-C6-cyanoalkyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, di(C1-C6-alkoxy)C1-C6-alkyl, C1-C6-haloalkoxy-C1-C6-alkyl, C3-C6-alkenyloxy-C1-C6-alkyl, C3-C6-haloalkenyloxy-C1-C6-alkyl, C3-C6-alkenyloxy-C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkylthio-C1-C6-alkyl, C1-C6-alkylsulfinyl-C1-C6-alkyl, C1-C6-alkylsulfonyl-C1-C6-alkyl, C1-C6-alkylcarbonyl-C1-C6-alkyl, C1-C6-alkoxycarbonyl-C1-C6-alkyl, C1-C6-haloalkoxycarbonyl-C1-C6-alkyl, C3-C6-alkenyloxycarbonyl-C1-C6-alkyl, C3-C6-alkynyloxycarbonyl-C1-C6-alkyl, amino, (C1-C6-alkyl)amino, di(C1-C6-alkyl)amino, (C1-C6-alkylcarbonyl)amino, amino-C1-C6-alkyl, (C1-C6-alkyl)amino-C1-C6-alkyl, di(C1-C6-alkyl)amino-C1-C6-alkyl, aminocarbonyl-C1-C6-alkyl, (C1-C6-alkyl)aminocarbonyl-C1-C6-alkyl, di(C1-C6-alkyl)aminocarbonyl-C1-C6-alkyl,
        • —N═CR12R13, wherein R12 and R13 independently of one another are H, C1-C4-alkyl or phenyl;
        • C3-C6-cycloalkyl, C3-C6-cycloalkyl-C1-C6-alkyl, C3-C6-heterocyclyl, C3-C6-heterocyclyl-C1-C6-alkyl, phenyl, phenyl-C1-C4-alkyl or a 5- or 6 membered heteroaryl,
          • wherein each cycloalkyl, heterocyclyl, phenyl or heteroaryl ring can be substituted by one to four substituents selected from R14 or a 3- to 7-membered carbocyclus,
          •  which carbocyclus optionally has in addition to carbon atoms one or two ring members selected from the group consisting of
          •  —N(R12)—, —N═N—, —C(═O)—, —O— and —S—, and which carbocyclus is optionally substituted with one to four substituents selected from R14;
          •  wherein R14 is halogen, NO2, CN, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy or C1-C4-alkoxy-carbonyl;
      • R10, R11 independently of one another are R9, or together form a 3- to 7-membered carbocyclus,
        •  which carbocyclus optionally has in addition to carbon atoms one or two ring members selected from the group consisting of —N(R12)—, —N═N—, —C(═O)—, —O— and —S—, and
        •  which carbocyclus is optionally substituted with one to four substituents selected from R14;
    • n 1 to 3;
    • Q CH2, O, S, SO, SO2, NH or (C1-C3-alkyl)N;
    • W O or S;
    • X NH, NCH3, O or S;
    • Y O or S;
    • Z phenyl, pyridyl, pyridazinyl, pyrimidinyl or pyrazinyl,
      •  each of which is optionally substituted by 1 to 4 substituents selected from the group consisting of halogen, CN, C1-C6-alkyl, C1-C6-haloalkyl, C1-C6-alkoxy, C1-C6-haloalkoxy;
    • including their agriculturally acceptable salts or derivatives, provided the compounds of formula (I) have a carboxyl group.

The PPO-inhibiting herbicides described above that are useful to carry out the present invention are often best applied in conjunction with one or more other herbicides to obtain control of a wider variety of undesirable vegetation. For example, PPO-inhibiting herbicides may further be used in conjunction with additional herbicides to which the crop plant is naturally tolerant, or to which it is resistant via expression of one or more additional transgenes as mentioned supra, or to which it is resistant via mutagenesis and breeding methods as described. When used in conjunction with other targeting herbicides, the PPO-inhibiting herbicides, to which the plant of the present invention had been made resistant or tolerant, can be formulated with the other herbicide or herbicides, tank mixed with the other herbicide or herbicides, or applied sequentially with the other herbicide or herbicides.

Suitable components for mixtures are, for example, selected from the herbicides of class b1) to b15)

    • B) herbicides of class b1) to b15):
      • b1) lipid biosynthesis inhibitors;
      • b2) acetolactate synthase inhibitors (ALS inhibitors);
      • b3) photosynthesis inhibitors;
      • b4) protoporphyrinogen-IX oxidase inhibitors,
      • b5) bleacher herbicides;
      • b6) enolpyruvyl shikimate 3-phosphate synthase inhibitors (EPSP inhibitors);
      • b7) glutamine synthetase inhibitors;
      • b8) 7,8-dihydropteroate synthase inhibitors (DHP inhibitors);
      • b9) mitosis inhibitors;
      • b10) inhibitors of the synthesis of very long chain fatty acids (VLCFA inhibitors);
      • b11) cellulose biosynthesis inhibitors;
      • b12) decoupler herbicides;
      • b13) auxinic herbicides;
      • b14) auxin transport inhibitors; and
      • b15) other herbicides selected from the group consisting of bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, dalapon, dazomet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flurenol, flurenol-butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, indaziflam, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640-27-7), methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoclamine, triaziflam, tridiphane and 6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinol (CAS 499223-49-3) and its salts and esters;

including their agriculturally acceptable salts or derivatives.

Examples of herbicides B which can be used in combination with the PPO-inhibiting herbicides according to the present invention are:

    • b1) from the group of the lipid biosynthesis inhibitors:

ACC-herbicides such as alloxydim, alloxydim-sodium, butroxydim, clethodim, clodinafop, clodinafop-propargyl, cycloxydim, cyhalofop, cyhalofop-butyl, diclofop, diclofop-methyl, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, haloxyfop, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-methyl, metamifop, pinoxaden, profoxydim, propaquizafop, quizalofop, quizalofop-ethyl, quizalofop-tefuryl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim, 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-72-6); 4-(2′,4′-Dichloro-4-cyclopropyl[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-dione (CAS 1312340-84-3); 5-(Acetyloxy)-4-(4′-chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one; 5-(Acetyloxy)-4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312340-82-1); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312337-51-1); 4-(2′,4′-Dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); and non ACC herbicides such as benfuresate, butylate, cycloate, dalapon, dimepiperate, EPTC, esprocarb, ethofumesate, flupropanate, molinate, orbencarb, pebulate, prosulfocarb, TCA, thiobencarb, tiocarbazil, triallate and vernolate;

    • b2) from the group of the ALS inhibitors:

sulfonylureas such as amidosulfuron, azimsulfuron, bensulfuron, bensulfuron-methyl, chlorimuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, flupyrsulfuron-methyl-sodium, foramsulfuron, halosulfuron, halosulfuron-methyl, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, metsulfuron, metsulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, primisulfuron, primisulfuron-methyl, propyrisulfuron, prosulfuron, pyrazosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron, thifensulfuron-methyl, triasulfuron, tribenuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron, triflusulfuron-methyl and tritosulfuron,

imidazolinones such as imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin and imazethapyr, triazolopyrimidine herbicides and sulfonanilides such as cloransulam, cloransulam-methyl, diclosulam, flumetsulam, florasulam, metosulam, penoxsulam, pyrimisulfan and pyroxsulam,

pyrimidinylbenzoates such as bispyribac, bispyribac-sodium, pyribenzoxim, pyriftalid, pyriminobac, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, 4-[[[2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]phenyl]methyl]amino]-benzoic acid-1-methylethyl ester (CAS 420138-41-6), 4-[[[2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]phenyl]methyl]amino]-benzoic acid propyl ester (CAS 420138-40-5), N-(4-bromophenyl)-2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzenemethanamine (CAS 420138-01-8),

sulfonylaminocarbonyl-triazolinone herbicides such as flucarbazone, flucarbazone-sodium, propoxycarbazone, propoxycarbazone-sodium, thiencarbazone and thiencarbazone-methy|; and triafamone;

among these, a preferred embodiment of the invention relates to those compositions comprising at least one imidazolinone herbicide;

    • b3) from the group of the photosynthesis inhibitors:

amicarbazone, inhibitors of the photosystem II, e.g. triazine herbicides, including of chlorotriazine, triazinones, triazindiones, methylthiotriazines and pyridazinones such as ametryn, atrazine, chloridazone, cyanazine, desmetryn, dimethametryn, hexazinone, metribuzin, prometon, prometryn, propazine, simazine, simetryn, terbumeton, terbuthylazin, terbutryn and trietazin, aryl urea such as chlorobromuron, chlorotoluron, chloroxuron, dimefuron, diuron, fluometuron, isoproturon, isouron, linuron, metamitron, methabenzthiazuron, metobenzuron, metoxuron, monolinuron, neburon, siduron, tebuthiuron and thiadiazuron, phenyl carbamates such as desmedipham, karbutilat, phenmedipham, phenmedipham-ethyl, nitrile herbicides such as bromofenoxim, bromoxynil and its salts and esters, ioxynil and its salts and esters, uraciles such as bromacil, lenacil and terbacil, and bentazon and bentazon-sodium, pyridate, pyridafol, pentanochlor and propanil and inhibitors of the photosystem I such as diquat, diquat-dibromide, paraquat, paraquat-dichloride and paraquat-dimetilsulfate. Among these, a preferred embodiment of the invention relates to those compositions comprising at least one aryl urea herbicide. Among these, likewise a preferred embodiment of the invention relates to those compositions comprising at least one triazine herbicide. Among these, likewise a preferred embodiment of the invention relates to those compositions comprising at least one nitrile herbicide;

    • b4) from the group of the protoporphyrinogen-IX oxidase inhibitors:

acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumiclorac-pentyl, flumioxazin, fluoroglycofen, fluoroglycofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100, N-ethyl-3-(2,6-dichloro-4-trifluoro-methylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyvl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione, 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione (CAS 1304113-05-0), methyl (E)-4-[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-enoate [CAS 948893-00-3], and 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4);

    • b5) from the group of the bleacher herbicides:

PDS inhibitors: beflubutamid, diflufenican, fluridone, flurochloridone, flurtamone, norflurazon, picolinafen, and 4-(3-trifluoromethylphenoxy)-2-(4-trifluoromethylphenyl)-pyrimidine (CAS 180608-33-7), HPPD inhibitors: benzobicyclon, benzofenap, clomazone, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone and bicyclopyrone, bleacher, unknown target: aclonifen, amitrole and flumeturon;

    • b6) from the group of the EPSP synthase inhibitors:

glyphosate, glyphosate-isopropylammonium, glyposate-potassium and glyphosate-trimesium (sulfosate);

    • b7) from the group of the glutamine synthase inhibitors:

bilanaphos (bialaphos), bilanaphos-sodium, glufosinate, glufosinate-P and glufosinate-ammonium;

    • b8) from the group of the DHP synthase inhibitors:

asulam;

    • b9) from the group of the mitosis inhibitors:

compounds of group K1: dinitroanilines such as benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine and trifluralin, phosphoramidates such as amiprophos, amiprophos-methyl, and butamiphos, benzoic acid herbicides such as chlorthal, chlorthal-dimethyl, pyridines such as dithiopyr and thiazopyr, benzamides such as propyzamide and tebutam; compounds of group K2: chlorpropham, propham and carbetamide, among these, compounds of group K1, in particular dinitroanilines are preferred;

    • b10) from the group of the VLCFA inhibitors:

chloroacetamides such as acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, dimethenamid-P, metazachlor, metolachlor, metolachlor-S, pethoxamid, pretilachlor, propachlor, propisochlor and thenylchlor, oxyacetanilides such as flufenacet and mefenacet, acetanilides such as diphenamid, naproanilide and napropamide, tetrazolinones such fentrazamide, and other herbicides such as anilofos, cafenstrole, fenoxasulfone, ipfencarbazone, piperophos, pyroxasulfone and isoxazoline compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9

the isoxazoline compounds of the formula (I)l are known in the art, e.g. from WO 2006/024820, WO 2006/037945, WO 2007/071900 and WO 2007/096576;

among the VLCFA inhibitors, preference is given to chloroacetamides and oxyacetamides;

    • b11) from the group of the cellulose biosynthesis inhibitors:

chlorthiamid, dichlobenil, flupoxam, indaziflam, triaziflam, isoxaben and 1-Cyclohexyl-5-pentafluorphenyloxy-14-[1,2,4,6]thiatriazin-3-ylamine;

    • b12) from the group of the decoupler herbicides:

dinoseb, dinoterb and DNOC and its salts;

    • b13) from the group of the auxinic herbicides:

2,4-D and its salts and esters such as clacyfos, 2,4-DB and its salts and esters, aminocyclopyrachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, benazolin, benazolin-ethyl, chloramben and its salts and esters, clomeprop, clopyralid and its salts and esters, dicamba and its salts and esters, dichlorprop and its salts and esters, dichlorprop-P and its salts and esters, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, halauxifen and its salts and esters (CAS 943832-60-8); MCPA and its salts and esters, MCPA-thioethyl, MCPB and its salts and esters, mecoprop and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac, TBA (2,3,6) and its salts and esters and triclopyr and its salts and esters;

    • b14) from the group of the auxin transport inhibitors: diflufenzopyr, diflufenzopyr-sodium, naptalam and naptalam-sodium;
    • b15) from the group of the other herbicides: bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, cyclopyrimorate (CAS 499223-49-3) and its salts and esters, dalapon, dazomet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flurenol, flurenol-butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, indaziflam, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640-27-7), methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoclamine, triaziflam and tridiphane.

Preferred herbicides B that can be used in combination with the PPO-inhibiting herbicides according to the present invention are:

    • b1) from the group of the lipid biosynthesis inhibitors:

clethodim, clodinafop-propargyl, cycloxydim, cyhalofop-butyl, diclofop-methyl, fenoxaprop-P-ethyl, fluazifop-P-butyl, haloxyfop-P-methyl, metamifop, pinoxaden, profoxydim, propaquizafop, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim, 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-72-6); 4-(2′,4′-Dichloro-4-cyclopropyl[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-dione (CAS 1312340-84-3); 5-(Acetyloxy)-4-(4′-chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one; 5-(Acetyloxy)-4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312340-82-1); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312337-51-1); 4-(2′,4′-Dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyll-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); benfuresate, dimepiperate, EPTC, esprocarb, ethofumesate, molinate, orbencarb, prosulfocarb, thiobencarb and triallate;

    • b2) from the group of the ALS inhibitors:

amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, chlorimuron-ethyl, chlorsulfuron, cloransulam-methyl, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, florasulam, flucarbazone-sodium, flucetosulfuron, flumetsulam, flupyrsulfuron-methyl-sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, metosulam, metsulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazon-sodium, propyrisulfuron, prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyrimisulfan, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, pyroxsulam, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone-methyl, thifensulfuron-methyl, triasulfuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron-methyl, tritosulfuron and triafamone;

    • b3) from the group of the photosynthesis inhibitors:

ametryn, amicarbazone, atrazine, bentazone, bentazone-sodium, bromoxynil and its salts and esters, chloridazone, chlorotoluron, cyanazine, desmedipham, diquat-dibromide, diuron, fluometuron, hexazinone, ioxynil and its salts and esters, isoproturon, lenacil, linuron, metamitron, methabenzthiazuron, metribuzin, paraquat, paraquat-dichloride, phenmedipham, propanil, pyridate, simazine, terbutryn, terbuthylazine and thidiazuron;

    • b4) from the group of the protoporphyrinogen-IX oxidase inhibitors:

acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, pyraflufen-ethyl, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), N-ethyl-3-(2,6-dichloro-4-trifluoromethyl-phenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione; 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione, and 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4);

    • b5) from the group of the bleacher herbicides:

aclonifen, beflubutamid, benzobicyclon, clomazone, diflufenican, flurochloridone, flurtamone, isoxaflutole, mesotrione, norflurazon, picolinafen, pyrasulfotole, pyrazolynate, sulcotrione, tefuryltrione, tembotrione, topramezone, bicyclopyrone, 4-(3-trifluoromethyl-phenoxy)-2-(4-trifluoromethylphenyl)pyrimidine (CAS 180608-33-7), amitrole and flumeturon;

    • b6) from the group of the EPSP synthase inhibitors:

glyphosate, glyphosate-isopropylammonium, glyphosate-potassium and glyphosate-trimesium (sulfosate);

    • b7) from the group of the glutamine synthase inhibitors:

glufosinate, glufosinate-P, glufosinate-ammonium;

    • b8) from the group of the DHP synthase inhibitors: asulam;
    • b9) from the group of the mitosis inhibitors:

benfluralin, dithiopyr, ethalfluralin, oryzalin, pendimethalin, thiazopyr and trifluralin;

    • b10) from the group of the VLCFA inhibitors:

acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethenamid, dimethenamid-P, fentrazamide, flufenacet, mefenacet, metazachlor, metolachlor, S-metolachlor, naproanilide, napropamide, pretilachlor, fenoxasulfone, ipfencarbazone, pyroxasulfone thenylchlor and isoxazoline-compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9 as mentioned above;

    • b11) from the group of the cellulose biosynthesis inhibitors: dichlobenil, flupoxam, isoxaben and 1-Cyclohexyl-5-pentafluorphenyloxy-14-[1,2,4,6]thiatriazin-3-ylamine;
    • b13) from the group of the auxinic herbicides:

2,4-D and its salts and esters, aminocyclopyrachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, clopyralid and its salts and esters, dicamba and its salts and esters, dichlorprop-P and its salts and esters, fluroxypyr-meptyl, halauxifen and its salts and esters (CAS 943832-60-8), MCPA and its salts and esters, MCPB and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac and triclopyr and its salts and esters;

    • b14) from the group of the auxin transport inhibitors: diflufenzopyr and diflufenzopyr-sodium;
    • b15) from the group of the other herbicides: bromobutide, cinmethylin, cumyluron, cyclopyrimorate (CAS 499223-49-3) and its salts and esters, dalapon, difenzoquat, difenzoquat-metilsulfate, DSMA, dymron (=daimuron), flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, indanofan, indaziflam, metam, methylbromide, MSMA, oxaziclomefone, pyributicarb, triaziflam and tridiphane.

Particularly preferred herbicides B that can be used in combination with the PPO-inhibiting herbicides according to the present invention are:

    • b1) from the group of the lipid biosynthesis inhibitors: clodinafop-propargyl, cycloxydim, cyhalofop-butyl, fenoxaprop-P-ethyl, pinoxaden, profoxydim, tepraloxydim, tralkoxydim, 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-72-6); 4-(2′,4′-Dichloro-4-cyclopropyl[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-dione (CAS 1312340-84-3); 5-(Acetyloxy)-4-(4′-chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one; 5-(Acetyloxy)-4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312340-82-1); 5-(Acetyloxy)-4-(2′,4′-dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4′-Chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312337-51-1); 4-(2′,4′-Dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4′-Chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); esprocarb, prosulfocarb, thiobencarb and triallate;
    • b2) from the group of the ALS inhibitors: bensulfuron-methyl, bispyribac-sodium, cyclosulfamuron, diclosulam, flumetsulam, flupyrsulfuron-methyl-sodium, foramsulfuron, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, nicosulfuron, penoxsulam, propoxycarbazon-sodium, propyrisulfuron, pyrazosulfuron-ethyl, pyroxsulam, rimsulfuron, sulfosulfuron, thiencarbazon-methyl, tritosulfuron and triafamone;
    • b3) from the group of the photosynthesis inhibitors: ametryn, atrazine, diuron, fluometuron, hexazinone, isoproturon, linuron, metribuzin, paraquat, paraquat-dichloride, propanil, terbutryn and terbuthylazine;
    • b4) from the group of the protoporphyrinogen-IX oxidase inhibitors: acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl. oxyfluorfen, saflufenacil. sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)-phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), and 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione, and 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione;
    • b5) from the group of the bleacher herbicides: clomazone, diflufenican, flurochloridone, isoxaflutole, mesotrione, picolinafen, sulcotrione, tefuryltrione, tembotrione, topramezone, bicyclopyrone, amitrole and flumeturon;
    • b6) from the group of the EPSP synthase inhibitors: glyphosate, glyphosate-isopropylammonium and glyphosate-trimesium (sulfosate);
    • b7) from the group of the glutamine synthase inhibitors: glufosinate, glufosinate-P and glufosinate-ammonium;
    • b9) from the group of the mitosis inhibitors: pendimethalin and trifluralin;
    • b10) from the group of the VLCFA inhibitors: acetochlor, cafenstrole, dimethenamid-P, fentrazamide, flufenacet, mefenacet, metazachlor, metolachlor, S-metolachlor, fenoxasulfone, ipfencarbazone and pyroxasulfone; likewise, preference is given to isoxazoline compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9 as mentioned above;
    • b11) from the group of the cellulose biosynthesis inhibitors: isoxaben;
    • b13) from the group of the auxinic herbicides: 2,4-D and its salts and esters such as clacyfos, and aminocyclopyrachlor and its salts and esters, aminopyralid and its salts and its esters, clopyralid and its salts and esters, dicamba and its salts and esters, fluroxypyr-meptyl, quinclorac and quinmerac;
    • b14) from the group of the auxin transport inhibitors: diflufenzopyr and diflufenzopyr-sodium,
    • b15) from the group of the other herbicides: dymron (=daimuron), indanofan, indaziflam, oxaziclomefone and triaziflam.

Moreover, it may be useful to apply the PPO-inhibiting herbicides, when used in combination with a compound B described SUPRA, in combination with safeners. Safeners are chemical compounds which prevent or reduce damage on useful plants without having a major impact on the herbicidal action of herbicides towards unwanted plants. They can be applied either before sowings (e.g. on seed treatments, shoots or seedlings) or in the pre-emergence application or post-emergence application of the useful plant.

Furthermore, the safeners C, the PPO-inhibiting herbicides and/or the herbicides B can be applied simultaneously or in succession.

Suitable safeners are e.g. (quinolin-8-oxy)acetic acids, 1-phenyl-5-haloalkyl-1H-1,2,4-triazol-3-carboxylic acids, 1-phenyl-4,5-dihydro-5-alkyl-1H-pyrazol-3,5-dicarboxylic acids, 4,5-dihydro-5,5-diaryl-3-isoxazol carboxylic acids, dichloroacetamides, alpha-oximinophenylacetonitriles, acetophenonoximes, 4,6-dihalo-2-phenylpyrimidines, N-[[4-(aminocarbonyl)phenyl]sulfonyl]-2-benzoic amides, 1,8-naphthalic anhydride, 2-halo-4-(haloalkyl)-5-thiazol carboxylic acids, phosphorthiolates and N-alkyl-O-phenyl-carbamates and their agriculturally acceptable salts and their agriculturally acceptable derivatives such amides, esters, and thioesters, provided they have an acid group.

Examples of preferred safeners C are benoxacor, cloquintocet, cyometrinil, cyprosulfamide, dichlormid, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, oxabetrinil, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3) and 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4).

Especially preferred safeners C are benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, naphthalic anhydride, oxabetrinil, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3) and 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4).

Particularly preferred safeners C are benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, furilazole, isoxadifen, mefenpyr, naphtalic anhydride, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3), and 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4).

Also preferred safeners C are benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, furilazole, isoxadifen, mefenpyr, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3) and 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4).

Particularly preferred safeners C, which, as component C, are constituent of the composition according to the invention are the safeners C as defined above; in particular the safeners C.1-C.12 listed below in table C:

TABLE C
Safener C
C.1 benoxacor
C.2 cloquintocet
C.3 cyprosulfamide
C.4 dichlormid
C.5 fenchlorazole
C.6 fenclorim
C.7 furilazole
C.8 isoxadifen
C.9 mefenpyr
C.10 naphtalic acid anhydride
C.11 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane
(MON4660, CAS 71526-07-3)
C.12 2,2,5-trimethyl-3-(dichloro-acetyl)-1,3-oxazolidine
(R-29148, CAS 52836-31-4)

The PPO-inhibiting herbicides (compounds A) and the active compounds B of groups b1) to b15) and the active compounds C are known herbicides and safeners, see, for example, The Compendium of Pesticide Common Names (www.alanwood.net/pesticides/); Farm Chemicals Handbook 2000 volume 86, Meister Publishing Company, 2000; B. Hock, C. Fedtke, R. R. Schmidt, Herbizide [Herbicides], Georg Thieme Verlag, Stuttgart 1995; W. H. Ahrens, Herbicide Handbook, 7th edition, Weed Science Society of America, 1994; and K. K. Hatzios, Herbicide Handbook, Supplement for the 7th edition, Weed Science Society of America, 1998. 2,2,5-Trimethyl-3-(dichloroacetyl)-1,3-oxazolidine [CAS No. 52836-31-4] is also referred to as R-29148. 4-(Dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane [CAS No. 71526-07-3] is also referred to as AD-67 and MON 4660.

The assignment of the active compounds to the respective mechanisms of action is based on current knowledge. If several mechanisms of action apply to one active compound, this substance was only assigned to one mechanism of action.

Active compounds B and C having a carboxyl group can be employed in the form of the acid, in the form of an agriculturally suitable salt as mentioned above or else in the form of an agriculturally acceptable derivative in the compositions according to the invention.

In the case of dicamba, suitable salts include those, where the counterion is an agri-culturally acceptable cation. For example, suitable salts of dicamba are dicamba-sodium, dicamba-potassium, dicamba-methylammonium, dicamba-dimethylammonium, dicamba-isopropylammonium, dicamba-diglycolamine, dicamba-olamine, dicamba-diolamine, dicamba-trolamine, dicamba-N,N-bis-(3-aminopropyl)methylamine and dicamba-diethylenetriamine. Examples of a suitable ester are dicamba-methyl and dicamba-butotyl.

Suitable salts of 2,4-D are 2,4-D-ammonium, 2,4-D-dimethylammonium, 2,4-D-diethylammonium, 2,4-D-diethanolammonium (2,4-D-diolamine), 2,4-D-triethanol-ammonium, 2,4-D-isopropylammonium, 2,4-D-triisopropanolammonium, 2,4-D-heptylammonium, 2,4-D-dodecylammonium, 2,4-D-tetradecylammonium, 2,4-D-triethylammonium, 2,4-D-tris(2-hydroxypropyl)ammonium, 2,4-D-tris(isopropyl)-ammonium, 2,4-D-trolamine, 2,4-D-lithium, 2,4-D-sodium. Examples of suitable esters of 2,4-D are 2,4-D-butotyl, 2,4-D-2-butoxypropyl, 2,4-D-3-butoxypropyl, 2,4-D-butyl, 2,4-D-ethyl, 2,4-D-ethylhexyl, 2,4-D-isobutyl, 2,4-D-isooctyl, 2,4-D-isopropyl, 2,4-D-meptyl, 2,4-D-methyl, 2,4-D-octyl, 2,4-D-pentyl, 2,4-D-propyl, 2,4-D-tefuryl and clacyfos.

Suitable salts of 2,4-DB are for example 2,4-DB-sodium, 2,4-DB-potassium and 2,4-DB-dimethylammonium. Suitable esters of 2,4-DB are for example 2,4-DB-butyl and 2,4-DB-isoctyl.

Suitable salts of dichlorprop are for example dichlorprop-sodium, dichlorprop-potassium and dichlorprop-dimethylammonium. Examples of suitable esters of dichlorprop are dichlorprop-butotyl and dichlorprop-isoctyl.

Suitable salts and esters of MCPA include MCPA-butotyl, MCPA-butyl, MCPA-dimethyl-ammonium, MCPA-diolamine, MCPA-ethyl, MCPA-thioethyl, MCPA-2-ethylhexyl, MCPA-isobutyl, MCPA-isoctyl, MCPA-isopropyl, MCPA-isopropylammonium, MCPA-methyl, MCPA-olamine, MCPA-potassium, MCPA-sodium and MCPA-trolamine. A suitable salt of MCPB is MCPB sodium. A suitable ester of MCPB is MCPB-ethyl. Suitable salts of clopyralid are clopyralid-potassium, clopyralid-olamine and clopyralid-tris-(2-hydroxypropyl)ammonium. Example of suitable esters of clopyralid is clopyralid-methyl.

Examples of a suitable ester of fluroxypyr are fluroxypyr-meptyl and fluroxypyr-2-butoxy-1-methylethyl, wherein fluroxypyr-meptyl is preferred.

Suitable salts of picloram are picloram-dimethylammonium, picloram-potassium, picloram-triisopropanolammonium, picloram-triisopropylammonium and picloram-trolamine. A suitable ester of picloram is picloram-isoctyl.

A suitable salt of triclopyr is triclopyr-triethylammonium. Suitable esters of triclopyr are for example triclopyr-ethyl and triclopyr-butotyl.

Suitable salts and esters of chloramben include chloramben-ammonium, chloramben-diolamine, chloramben-methyl, chloramben-methylammonium and chloramben-sodium.

Suitable salts and esters of 2,3,6-TBA include 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-lithium, 2,3,6-TBA-potassium and 2,3,6-TBA-sodium.

Suitable salts and esters of aminopyralid include aminopyralid-potassium and amino-pyralid-tris(2-hydroxypropyl)ammonium.

Suitable salts of glyphosate are for example glyphosate-ammonium, glyphosate-diammonium, glyphoste-dimethylammonium, glyphosate-isopropylammonium, glyphosate-potassium, glyphosate-sodium, glyphosate-trimesium as well as the ethanolamine and diethanolamine salts, preferably glyphosate-diammonium, glyphosate-isopropylammonium and glyphosate-trimesium (sulfosate).

A suitable salt of glufosinate is for example glufosinate-ammonium.

A suitable salt of glufosinate-P is for example glufosinate-P-ammonium.

Suitable salts and esters of bromoxynil are for example bromoxynil-butyrate, bromoxynil-heptanoate, bromoxynil-octanoate, bromoxynil-potassium and bromoxynil-sodium.

Suitable salts and esters of ioxonil are for example ioxonil-octanoate, ioxonil-potassium and ioxonil-sodium.

Suitable salts and esters of mecoprop include mecoprop-butotyl, mecoprop-dimethylammonium, mecoprop-diolamine, mecoprop-ethadyl, mecoprop-2-ethylhexyl, mecoprop-isoctyl, mecoprop-methyl, mecoprop-potassium, mecoprop-sodium and mecoprop-trolamine.

Suitable salts of mecoprop-P are for example mecoprop-P-butotyl, mecoprop-P-dimethylammonium, mecoprop-P-2-ethylhexyl, mecoprop-P-isobutyl, mecoprop-P-potassium and mecoprop-P-sodium.

A suitable salt of diflufenzopyr is for example diflufenzopyr-sodium.

A suitable salt of naptalam is for example naptalam-sodium.

Suitable salts and esters of aminocyclopyrachlor are for example aminocyclopyrachlor-dimethylammonium, aminocyclopyrachlor-methyl, aminocyclopyrachlor-triisopropanolammonium, aminocyclopyrachlor-sodium and aminocyclopyrachlor-potassium.

A suitable salt of quinclorac is for example quinclorac-dimethylammonium.

A suitable salt of quinmerac is for example quinclorac-dimethylammonium.

A suitable salt of imazamox is for example imazamox-ammonium.

Suitable salts of imazapic are for example imazapic-ammonium and imazapic-isopropylammonium.

Suitable salts of imazapyr are for example imazapyr-ammonium and imazapyr-isopropylammonium.

A suitable salt of imazaquin is for example imazaquin-ammonium.

Suitable salts of imazethapyr are for example imazethapyr-ammonium and imazethapyr-isopropylammonium.

A suitable salt of topramezone is for example topramezone-sodium.

The preferred embodiments of the invention mentioned herein below have to be understood as being preferred either independently from each other or in combination with one another.

According to a preferred embodiment of the invention, the composition comprises as component B at least one, preferably exactly one herbicide B.

According to another preferred embodiment of the invention, the composition comprises at least two, preferably exactly two, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises at least three, preferably exactly three, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100; 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), and as component B at least one, preferably exactly one, herbicide B.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly preferably exactly one PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), and at least two, preferably exactly two, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly preferably exactly one PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) and at least three, preferably exactly three, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b1), in particular selected from the group consisting of clethodim, clodinafop-propargyl, cycloxydim, cyhalofop-butyl, fenoxaprop-P-ethyl, fluazifop, pinoxaden, profoxydim, quizalofop, sethoxydim, tepraloxydim, tralkoxydim, esprocarb, prosulfocarb, thiobencarb and triallate.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b2), in particular selected from the group consisting of bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, cyclosulfamuron, diclosulam, flumetsulam, flupyrsulfuron-methyl-sodium, foramsulfuron, halosulfuron-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metazosulfuron, nicosulfuron, penoxsulam, propoxycarbazon-sodium, pyrazosulfuron-ethyl, pyrithiobac-sodium, pyroxsulam, rimsulfuron, sulfosulfuron, thiencarbazon-methyl, thifensulfuron-methyl, trifloxysulfuron and tritosulfuron.

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b3), in particular selected from the group consisting of ametryn, atrazine, bentazon, bromoxynil, diuron, fluometuron, hexazinone, isoproturon, linuron, metribuzin, paraquat, paraquat-dichloride, prometryne, propanil, terbutryn and terbuthylazine.

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b4), in particular selected from the group consisting of acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumiclorac-pentyl, flumioxazin, fluoroglycofen, fluoroglycofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione, 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione, methyl (E)-4-[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-enoate [CAS 948893-00-3], 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4).

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b5), in particular selected from the group consisting of clomazone, diflufenican, flurochloridone, isoxaflutole, mesotrione, picolinafen, sulcotrione, tefuryltrione, tembotrione, topramezone, bicyclopyrone, amitrole and flumeturon.

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b6), in particular selected from the group consisting of glyphosate, glyphosate-isopropylammonium and glyphosate-trimesium (sulfosate).

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b7), in particular selected from the group consisting of glufosinate, glufosinate-P and glufosinate-ammonium.

According to another preferred embodiment of the invention, the composition comprises, in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b9), in particular selected from the group consisting of pendimethalin and trifluralin.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin)), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b10), in particular selected from the group consisting of acetochlor, cafenstrole, dimethenamid-P, fentrazamide, flufenacet, mefenacet, metazachlor, metolachlor, S-metolachlor, fenoxasulfone and pyroxasulfone. Likewise, preference is given to compositions comprising in addition to a a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b10), in particular selected from the group consisting of isoxazoline compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9, as defined above.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b13), in particular selected from the group consisting of 2,4-D and its salts and esters, aminocyclopyrachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, clopyralid and its salts and esters, dicamba and its salts and esters, fluroxypyr-meptyl, quinclorac and quinmerac.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b14), in particular selected from the group consisting of diflufenzopyr and diflufenzopyr-sodium.

According to another preferred embodiment of the invention, the composition comprises, in addition to a PPO-inhibiting herbicide, preferably acifluorfen, acifluorfen-sodium, butafenacil, cinidon-ethyl, carfentrazone-ethyl, flumioxazin, fluthiacet-methyl, fomesafen, lactofen, oxadiargyl, oxyfluorfen, saflufenacil, sulfentrazone, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100), 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), especially preferred saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), at least one and especially exactly one herbicidally active compound from group b15), in particular selected from the group consisting of dymron (=daimuron), indanofan, indaziflam, oxaziclomefone and triaziflam.

Here and below, the term “binary compositions” includes compositions comprising one or more, for example 1, 2 or 3, active compounds of the PPO-inhibiting herbicide and either one or more, for example 1, 2 or 3, herbicides B.

In binary compositions comprising at least one PPO-inhibiting herbicide as component A and at least one herbicide B, the weight ratio of the active compounds A:B is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1.

Particularly preferred herbicides B are the herbicides B as defined above; in particular the herbicides B.1-B.229 listed below in table B:

TABLE B
Herbicide B
B.1clethodim
B.2clodinafop-propargyl
B.3cycloxydim
B.4cyhalofop-butyl
B.5fenoxaprop-ethyl
B.6fenoxaprop-P-ethyl
B.7fluazifop
B.8metamifop
B.9pinoxaden
B.10profoxydim
B.11quizalofop
B.12sethoxydim
B.13tepraloxydim
B.14tralkoxydim
B.15esprocarb
B.16ethofumesate
B.17molinate
B.18prosulfocarb
B.19thiobencarb
B.20triallate
B.21bensulfuron-methyl
B.22bispyribac-sodium
B.23cloransulam-methyl
B.24chlorsulfuron
B.25clorimuron
B.26cyclosulfamuron
B.27diclosulam
B.28florasulam
B.29flumetsulam
B.30flupyrsulfuron-methyl-sodium
B.31foramsulfuron
B.32halosulfuron-methyl
B.33imazamox
B.34imazamox-ammonium
B.35imazapic
B.36imazapic-ammonium
B.37imazapic-isopropylammonium
B.38imazapyr
B.39imazapyr-ammonium
B.40imazapyr-isopropylammonium
B.41imazaquin
B.42imazaquin-ammonium
B.43imazethapyr
B.44imazethapyr-ammonium
B.45imazethapyr-isopropylammonium
B.46imazosulfuron
B.47iodosulfuron-methyl-sodium
B.48iofensulfuron
B.49iofensulfuron-sodium
B.50mesosulfuron-methyl
B.51metazosulfuron
B.52metsulfuron-methyl
B.53metosulam
B.54nicosulfuron
B.55penoxsulam
B.56propoxycarbazon-sodium
B.57pyrazosulfuron-ethyl
B.58pyribenzoxim
B.59pyriftalid
B.60pyrithiobac-sodium
B.61pyroxsulam
B.62propyrisulfuron
B.63rimsulfuron
B.64sulfosulfuron
B.65thiencarbazone-methyl
B.66thifensulfuron-methyl
B.67tribenuron-methyl
B.68trifloxysulfuron
B.69tritosulfuron
B.70triafamone
B.71ametryne
B.72atrazine
B.73bentazon
B.74bromoxynil
B.75bromoxynil-octanoate
B.76bromoxynil-heptanoate
B.77bromoxynil-potassium
B.78diuron
B.79fluometuron
B.80hexazinone
B.81isoproturon
B.82linuron
B.83metamitron
B.84metribuzin
B.85prometryne
B.86propanil
B.87simazin
B.88terbuthylazine
B.89terbutryn
B.90paraquat-dichloride
B.91acifluorfen
B.92acifluorfen-sodium
B.93azafenidin
B.94bencarbazone
B.95benzfendizone
B.96bifenox
B.97butafenacil
B.98carfentrazone
B.99carfentrazone-ethyl
B.100chlomethoxyfen
B.101cinidon-ethyl
B.102fluazolate
B.103flufenpyr
B.104flufenpyr-ethyl
B.105flumiclorac
B.106flumiclorac-pentyl
B.107flumioxazin
B.108fluoroglycofen
B.109fluoroglycofen-ethyl
B.110fluthiacet
B.111fluthiacet-methyl
B.112fomesafen
B.113halosafen
B.114lactofen
B.115oxadiargyl
B.116oxadiazon
B.117oxyfluorfen
B.118pentoxazone
B.119profluazol
B.120pyraclonil
B.121pyraflufen
B.122pyraflufen-ethyl
B.123saflufenacil
B.124sulfentrazone
B.125thidiazimin
B.126tiafenacil
B.127ethyl [3-[2-chloro-4-fluoro-5-
(1-methyl-6-trifluoromethyl-
2,4-dioxo-1,2,3,4-tetrahydro-
pyrimidin-3-yl)phenoxy]-2-
pyridyloxy]acetate (CAS
353292-31-6)
B.1281,5-dimethyl-6-thioxo-3-(2,2,7-
trifluoro-3-oxo-4-(prop-2-
ynyl)-3,4-dihydro-2H-
benzo[b][1,4]oxazin-6-yl)-1,3,5-
triazinane-2,4-dione (CAS
1258836-72-4/
trifludimoxazin)
B.129N-ethyl-3-(2,6-dichloro-4-
trifluoromethylphenoxy)-5-
methyl-1H-pyrazole-1-
carboxamide (CAS 452098-92-9)
B.130N-tetrahydrofurfuryl-3-(2,6-
dichloro-4-
trifluoromethylphenoxy)-5-
methyl-1H-pyrazole-1-
carboxamide (CAS 915396-43-9)
B.131N-ethyl-3-(2-chloro-6-fluoro-
4-trifluoromethylphenoxy)-5-
methyl-1H-pyrazole-1-
carboxamide (CAS 452099-05-7)
B.132N-tetrahydrofurfuryl-3-(2-
chloro-6-fluoro-4-trifluoro-
methylphenoxy)-5-methyl-1H-
pyrazole-1-carboxamide (CAS
452100-03-7)
B.1333-[7-fluoro-3-oxo-4-(prop-2-
ynyl)-3,4-dihydro-2H-
benzo[1,4]oxazin-6-yl]-1,5-
dimethyl-6-thioxo-
[1,3,5]triazinan-2,4-dione
B.1342-(2,2,7-Trifluoro-3-oxo-4-
prop-2-ynyl-3,4-dihydro-2H-
benzo[1,4]oxazin-6-yl)-4,5,6,7-
tetrahydro-isoindole-1,3-dione
B.1351-Methyl-6-trifluoromethyl-3-
(2,2,7-trifluoro-3-oxo-4-prop-
2-ynyl-3,4-dihydro-2H-
benzo[1,4]oxazin-6-yl)-1H-
pyrimidine-2,4-dione
B.136methyl (E)-4-[2-chloro-5-[4-
chloro-5-(difluoromethoxy)-
1H-methyl-pyrazol-3-yl]-4-
fluoro-phenoxy]-3-methoxy-
but-2-enoate [CAS 948893-
00-3]
B.1373-[7-Chloro-5-fluoro-2-
(trifluoromethyl)-1H-
benzimidazol-4-yl]-1-methyl-
6-(trifluoromethyl)-1H-
pyrimidine-2,4-dione (CAS
212754-02-4)
B.138benzobicyclon
B.139clomazone
B.140diflufenican
B.141flurochloridone
B.142isoxaflutole
B.143mesotrione
B.144norflurazone
B.145picolinafen
B.146sulcotrione
B.147tefuryltrione
B.148tembotrione
B.149topramezone
B.150topramezone-sodium
B.151bicyclopyrone
B.152amitrole
B.153fluometuron
B.154glyphosate
B.155glyphosate-ammonium
B.156glyphosate-dimethylammonium
B.157glyphosate-isopropylammonium
B.158glyphosate-trimesium (sulfosate)
B.159glyphosate-potassium
B.160glufosinate
B.161glufosinate-ammonium
B.162glufosinate-P
B.163glufosinate-P-ammonium
B.164pendimethalin
B.165trifluralin
B.166acetochlor
B.167butachlor
B.168cafenstrole
B.169dimethenamid-P
B.170fentrazamide
B.171flufenacet
B.172mefenacet
B.173metazachlor
B.174metolachlor
B.175S-metolachlor
B.176pretilachlor
B.177fenoxasulfone
B.178isoxaben
B.179ipfencarbazone
B.180pyroxasulfone
B.1812,4-D
B.1822,4-D-isobutyl
B.1832,4-D-dimethylammonium
B.1842,4-D-N,N,N-trimethylethanolammonium
B.185aminopyralid
B.186aminopyralid-methyl
B.187aminopyralid-tris(2-hydroxypropyl)ammonium
B.188clopyralid
B.189clopyralid-methyl
B.190clopyralid-olamine
B.191dicamba
B.192dicamba-butotyl
B.193dicamba-diglycolamine
B.194dicamba-dimethylammonium
B.195dicamba-diolamine
B.196dicamba-isopropylammonium
B.197dicamba-potassium
B.198dicamba-sodium
B.199dicamba-trolamine
B.200dicamba-N,N-bis-(3-aminopropyl)methylamine
B.201dicamba-diethylenetriamine
B.202fluroxypyr
B.203fluroxypyr-meptyl
B.204MCPA
B.205MCPA-2-ethylhexyl
B.206MCPA-dimethylammonium
B.207quinclorac
B.208quinclorac-dimethylammonium
B.209quinmerac
B.210quinmerac-dimethylammonium
B.211aminocyclopyrachlor
B.212aminocyclopyrachlor-potassium
B.213aminocyclopyrachlor-methyl
B.214diflufenzopyr
B.215diflufenzopyr-sodium
B.216dymron
B.217indanofan
B.218indaziflam
B.219oxaziclomefone
B.220triaziflam
B.221II.1
B.222II.2
B.223II.3
B.224II.4
B.225II.5
B.226II.6
B.227II.7
B.228II.8
B.229II.9

Particularly preferred are compositions 1.1 to 1.229, comprising acifluorfen and the substance(s) as defined in the respective row of table B-1:

TABLE B-1
(compositions 1.1 to 1.229):
comp. no.herbicide B
1.1B.1
1.2B.2
1.3B.3
1.4B.4
1.5B.5
1.6B.6
1.7B.7
1.8B.8
1.9B.9
1.10B.10
1.11B.11
1.12B.12
1.13B.13
1.14B.14
1.15B.15
1.16B.16
1.17B.17
1.18B.18
1.19B.19
1.20B.20
1.21B.21
1.22B.22
1.23B.23
1.24B.24
1.25B.25
1.26B.26
1.27B.27
1.28B.28
1.29B.29
1.30B.30
1.31B.31
1.32B.32
1.33B.33
1.34B.34
1.35B.35
1.36B.36
1.37B.37
1.38B.38
1.39B.39
1.40B.40
1.41B.41
1.42B.42
1.43B.43
1.44B.44
1.45B.45
1.46B.46
1.47B.47
1.48B.48
1.49B.49
1.50B.50
1.51B.51
1.52B.52
1.53B.53
1.54B.54
1.55B.55
1.56B.56
1.57B.57
1.58B.58.
1.59B.59
1.60B.60
1.61B.61
1.62B.62
1.63B.63
1.64B.64
1.65B.65
1.66B.66
1.67B.67
1.68B.68
1.69B.69
1.70B.70
1.71B.71
1.72B.72
1.73B.73
1.74B.74
1.75B.75
1.76B.76
1.77B.77
1.78B.78
1.79B.79
1.80B.80
1.81B.81
1.82B.82
1.83B.83
1.84B.84
1.85B.85
1.86B.86
1.87B.87
1.88B.88
1.89B.89
1.90B.90
1.91B.91
1.92B.92
1.93B.93
1.94B.94
1.95B.95
1.96B.96
1.97B.97
1.98B.98
1.99B.99
1.100B.100
1.101B.101
1.102B.102
1.103B.103
1.104B.104
1.105B.105
1.106B.106
1.107B.107
1.108B.108
1.109B.109
1.110B.110
1.111B.111
1.112B.112
1.113B.113
1.114B.114
1.115B.115
1.116B.116
1.117B.117
1.118B.118
1.119B.119
1.120B.120
1.121B.121
1.122B.122
1.123B.123
1.124B.124
1.125B.125
1.126B.126
1.127B.127
1.128B.128
1.129B.129
1.130B.130
1.131B.131
1.132B.132
1.133B.133
1.134B.134
1.135B.135
1.136B.136
1.137B.137
1.138B.138
1.139B.139
1.140B.140
1.141B.141
1.142B.142
1.143B.143
1.144B.144
1.145B.145
1.146B.146
1.147B.147
1.148B.148
1.149B.149
1.150B.150
1.151B.151
1.152B.152
1.153B.153
1.154B.154
1.155B.155
1.156B.156
1.157B.157
1.158B.158
1.159B.159
1.160B.160
1.161B.161
1.162B.162
1.163B.163
1.164B.164
1.165B.165
1.166B.166
1.167B.167
1.168B.168
1.169B.169
1.170B.170
1.171B.171
1.172B.172
1.173B.173
1.174B.174
1.175B.175
1.176B.176
1.177B.177
1.178B.178
1.179B.179
1.180B.180
1.181B.181
1.182B.182
1.183B.183
1.184B.184
1.185B.185
1.186B.186
1.187B.187
1.188B.188
1.189B.189
1.190B.190
1.191B.191
1.192B.192
1.193B.193
1.194B.194
1.195B.195
1.196B.196
1.197B.197
1.198B.198
1.199B.199
1.200B.200
1.201B.201
1.202B.202
1.203B.203
1.204B.204
1.205B.205
1.206B.206
1.207B.207
1.208B.208
1.209B.209
1.210B.210
1.211B.211
1.212B.212
1.213B.213
1.214B.214
1.215B.215
1.216B.216
1.217B.217
1.218B.218
1.219B.219
1.220B.220
1.221B.221
1.222B.222
1.223B.223
1.224B.224
1.225B.225
1.226B.226
1.227B.227
1.228B.228
1.229B.229

Also especially preferred are compositions 2.1. to 2.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A acifluorfen-sodium.

Also especially preferred are compositions 3.1. to 3.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A azafenidin.

Also especially preferred are compositions 4.1. to 4.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A bencarbazone.

Also especially preferred are compositions 5.1. to 5.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A benzfendizone.

Also especially preferred are compositions 6.1. to 6.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A bifenox.

Also especially preferred are compositions 7.1. to 7.229 which differ from the corresponding compositions 1.1 to 1.227 only in that they comprise as component A butafenacil.

Also especially preferred are compositions 8.1. to 8.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A carfentrazone.

Also especially preferred are compositions 9.1. to 9.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A carfentrazone-ethyl.

Also especially preferred are compositions 10.1. to 10.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A chlomethoxyfen.

Also especially preferred are compositions 11.1. to 11.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A cinidon-ethyl.

Also especially preferred are compositions 12.1. to 12.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fluazolate.

Also especially preferred are compositions 13.1. to 13.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A flufenpyr.

Also especially preferred are compositions 14.1. to 14.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A flufenpyr-ethyl.

Also especially preferred are compositions 15.1. to 15.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A flumiclorac.

Also especially preferred are compositions 16.1. to 16.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A flumiclorac-pentyl.

Also especially preferred are compositions 17.1. to 17.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A flumioxazin.

Also especially preferred are compositions 18.1. to 18.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fluoroglycofen.

Also especially preferred are compositions 19.1. to 19.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fluoroglycofen-ethyl.

Also especially preferred are compositions 20.1. to 20.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fluthiacet.

Also especially preferred are compositions 21.1. to 21.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fluthiacet-methyl.

Also especially preferred are compositions 22.1. to 22.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A fomesafen.

Also especially preferred are compositions 23.1. to 23.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A halosafen.

Also especially preferred are compositions 24.1. to 24.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A lactofen.

Also especially preferred are compositions 25.1. to 25.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A oxadiargyl.

Also especially preferred are compositions 26.1. to 26.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A oxadiazon.

Also especially preferred are compositions 27.1. to 27.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A oxyfluorfen.

Also especially preferred are compositions 28.1. to 28.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A pentoxazone.

Also especially preferred are compositions 29.1. to 29.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A profluazol.

Also especially preferred are compositions 30.1. to 30.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A pyraclonil.

Also especially preferred are compositions 31.1. to 31.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A pyraflufen.

Also especially preferred are compositions 32.1. to 32.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A pyraflufen-ethyl.

Also especially preferred are compositions 33.1. to 33.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A saflufenacil.

Also especially preferred are compositions 34.1. to 34.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A sulfentrazone.

Also especially preferred are compositions 35.1. to 35.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A thidiazimin.

Also especially preferred are compositions 36.1. to 36.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A tiafenacil.

Also especially preferred are compositions 37.1. to 37.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100).

Also especially preferred are compositions 38.1. to 38.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) Also especially preferred are compositions 39.1. to 39.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9).

Also especially preferred are compositions 40.1. to 40.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9).

Also especially preferred are compositions 41.1. to 41.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7).

Also especially preferred are compositions 42.1. to 42.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A N-tetrahydrofurfuryl-3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7).

Also especially preferred are compositions 43.1. to 43.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione.

Also especially preferred are compositions 44.1. to 44.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A methyl (E)-4-[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-enoate (CAS 948893-00-3).

Also especially preferred are compositions 45.1. to 45.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A 3-[7-Chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4).

Also especially preferred are compositions 46.1. to 46.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A 2-(2,2,7-Trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione.

Also especially preferred are compositions 47.1. to 47.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they comprise as component A 1-Methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione Also especially preferred are compositions 48.1. to 48.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise benoxacor as safener C.

Also especially preferred are compositions 49.1. to 49.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise cloquintocet as safener C.

Also especially preferred are compositions 50.1. to 50.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise cyprosulfamide as safener C.

Also especially preferred are compositions 51.1. to 51.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise dichlormid as safener C.

Also especially preferred are compositions 52.1. to 52.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise fenchlorazole as safener C.

Also especially preferred are compositions 53.1. to 53.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise fenclorim as safener C.

Also especially preferred are compositions 54.1. to 54.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise furilazole as safener C.

Also especially preferred are compositions 55.1. to 55.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise isoxadifen as safener C.

Also especially preferred are compositions 56.1. to 56.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise mefenpyr as safener C.

Also especially preferred are compositions 57.1. to 57.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3) as safener C.

Also especially preferred are compositions 58.1. to 58.229 which differ from the corresponding compositions 1.1 to 1.229 only in that they additionally comprise 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4) as safener C.

It is generally preferred to use the compounds of the invention in combination with herbicides that are selective for the crop being treated and which complement the spectrum of weeds controlled by these compounds at the application rate employed. It is further generally preferred to apply the compounds of the invention and other complementary herbicides at the same time, either as a combination formulation or as a tank mix.

In another embodiment, the present invention refers to a method for identifying a herbicide by using a mutated PPO encoded by a nucleic acid which comprises the nucleotide sequence of SEQ ID NO: 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, or 130, or a variant or derivative thereof.

Said method comprises the steps of:

    • a) generating a transgenic cell or plant comprising a nucleic acid encoding a mutated PPO, wherein the mutated PPO is expressed;
    • b) applying a herbicide to the transgenic cell or plant of a) and to a control cell or plant of the same variety;
    • c) determining the growth or the viability of the transgenic cell or plant and the control cell or plant after application of said herbicide, and
    • d) selecting “herbicides” which confer reduced growth to the control cell or plant as compared to the growth of the transgenic cell or plant.

As described above, the present invention teaches compositions and methods for increasing the tolerance of a crop plant or seed as compared to a wild-type variety of the plant or seed. In a preferred embodiment, the tolerance of a crop plant or seed is increased such that the plant or seed can withstand a herbicide application of preferably approximately 1-1000 g ai ha−1, more preferably 1-200 g ai ha−1, even more preferably 5-150 g ai ha−1, and most preferably 10-100 g ai ha−1. As used herein, to “withstand” a herbicide application means that the plant is either not killed or only moderately injured by such application. It will be understood by the person skilled in the art that the application rates may vary, depending on the environmental conditions such as temperature or humidity, and depending on the chosen kind of herbicide (active ingredient ai).

Post-emergent weed control methods useful in various embodiments hereof utilize about >0.3× application rates of herbicides; in some embodiments, this can be about, for example, >0.3×, >0.4×, >0.5×, >0.6×, >0.7×, >0.8×, >0.9×, or >l× of herbicides. In one embodiment, herbicide-tolerant plants of the present invention have tolerance to a post-emergant application of a herbicides at an amount of about 25 to about 200 g ai/ha. In some embodiments, wherein the herbicide-tolerant plant is a dicot (e.g., soy, cotton), the post-emergant application of the herbicides is at an amount of about 50 g ai/ha. In another embodiment, wherein the herbicide-tolerant plant is a monocot (e.g., maize, rice, sorghum), the post-emergant application of the herbicides is at an amount of about 200 g ai/ha. In other embodiments, wherein the herbicide-tolerant plant is a Brassica (e.g., canola), the post-emergant application of the herbicides is at an amount of about 25 g ai/ha. In post-emergent weed control methods hereof, in some embodiments, the method can utilize herbicides application rates at about 7 to 10 days post-emergent. In another embodiment, the application rate can exceed lx herbicides; in some embodiments, the rate can be up to 4× herbicides, though more typically it will be about 2.5× or less, or about 2× or less, or about 1× or less.

Furthermore, the present invention provides methods that involve the use of at least one herbicide, optionally in combination with one or more herbicidal compounds B, and, optionally, a safener C, as described in detail supra.

In these methods, the herbicide can be applied by any method known in the art including, but not limited to, seed treatment, soil treatment, and foliar treatment. Prior to application, the herbicide can be converted into the customary formulations, for example solutions, emulsions, suspensions, dusts, powders, pastes and granules. The use form depends on the particular intended purpose; in each case, it should ensure a fine and even distribution of the compound according to the invention.

By providing plants having increased tolerance to herbicide, a wide variety of formulations can be employed for protecting plants from weeds, so as to enhance plant growth and reduce competition for nutrients. A herbicide can be used by itself for pre-emergence, post-emergence, pre-planting, and at-planting control of weeds in areas surrounding the crop plants described herein, or a herbicide formulation can be used that contains other additives. The herbicide can also be used as a seed treatment. Additives found in a herbicide formulation include other herbicides, detergents, adjuvants, spreading agents, sticking agents, stabilizing agents, or the like. The herbicide formulation can be a wet or dry preparation and can include, but is not limited to, flowable powders, emulsifiable concentrates, and liquid concentrates. The herbicide and herbicide formulations can be applied in accordance with conventional methods, for example, by spraying, irrigation, dusting, or the like.

Suitable formulations are described in detail in PCT/EP2009/063387 and PCT/EP2009/063386, which are incorporated herein by reference.

As disclosed herein, the PPO nucleic acids of the invention find use in enhancing the herbicide tolerance of plants that comprise in their genomes a gene encoding a herbicide-tolerant mutated PPO protein. Such a gene may be an endogenous gene or a transgene, as described above. Additionally, in certain embodiments, the nucleic acids of the present invention can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired phenotype. For example, the nucleic acids of the present invention may be stacked with any other polynucleotides encoding polypeptides having pesticidal and/or insecticidal activity, such as, for example, the Bacillus thuringiensis toxin proteins (described in U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser et al (1986) Gene 48: 109), 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), Glyphosate acetyl transferase (GAT), cytochrome P450 monooxygenase, phosphinothricin acetyltransferase (PAT), Acetohydroxyacid synthase (AHAS; EC 4.1.3.18, also known as acetolactate synthase or ALS), hydroxyphenyl pyruvate dioxygenase (HPPD), Phytoene desaturase (PD), Protoporphyrinogen oxidase (PPO) and dicamba degrading enzymes as disclosed in WO 02/068607, or phenoxyaceticacid- and phenoxypropionicacid-derivative degrading enzymes as disclosed in WO 2008141154 or WO 2005107437. The combinations generated can also include multiple copies of any one of the polynucleotides of interest.

Consequently, Herbicide-tolerant plants of the invention can be used in conjunction with an herbicide to which they are tolerant. Herbicides can be applied to the plants of the invention using any techniques known to those skilled in the art. Herbicides can be applied at any point in the plant cultivation process. For example, herbicides can be applied pre-planting, at planting, pre-emergence, post-emergence or combinations thereof. Herbicides may be applied to seeds and dried to form a layer on the seeds.

In some embodiments, seeds are treated with a safener, followed by a post-emergent application of a herbicides. In one embodiment, the post-emergent application of the herbicides is about 7 to 10 days following planting of safener-treated seeds. In some embodiments, the safener is cloquintocet, dichlormid, fluxofenim, or combinations thereof.

In other aspects, the present invention provides a method for controlling weeds at a locus for growth of a plant or plant part thereof, the method comprising: applying a composition comprising a herbicides to the locus.

In some aspects, the present invention provides a method for controlling weeds at a locus for growth of a plant, the method comprising: applying an herbicide composition comprising herbicides to the locus; wherein said locus is: (a) a locus that contains: a plant or a seed capable of producing said plant; or (b) a locus that is to be after said applying is made to contain the plant or the seed; wherein the plant or the seed comprises in at least some of its cells a polynucleotide operably linked to a promoter operable in plant cells, the promoter capable of expressing a mutated PPO polypeptide encoded by the polynucleotide, the expression of the mutated PPO polypeptide conferring to the plant tolerance to herbicides.

Herbicide compositions hereof can be applied, e.g., as foliar treatments, soil treatments, seed treatments, or soil drenches. Application can be made, e.g., by spraying, dusting, broadcasting, or any other mode known useful in the art.

In one embodiment, herbicides can be used to control the growth of weeds that may be found growing in the vicinity of the herbicide-tolerant plants invention. In embodiments of this type, an herbicide can be applied to a plot in which herbicide-tolerant plants of the invention are growing in vicinity to weeds. An herbicide to which the herbicide-tolerant plant of the invention is tolerant can then be applied to the plot at a concentration sufficient to kill or inhibit the growth of the weed. Concentrations of herbicide sufficient to kill or inhibit the growth of weeds are known in the art and are disclosed above.

In other embodiments, the present invention provides a method for controlling weeds in the vicinity of a herbicide-tolerant plant of the invention. The method comprises applying an effective amount of a herbicides to the weeds and to the auxinic herbicide-tolerant plant, wherein the plant has increased tolerance to auxinic herbicide when compared to a wild-type plant. In some embodiments, the herbicide-tolerant plants of the invention are preferably crop plants, including, but not limited to, sunflower, alfalfa, Brassica sp., soybean, cotton, safflower, peanut, tobacco, tomato, potato, wheat, rice, maize, sorghum, barley, rye, millet, and sorghum.

In other aspects, herbicide(s) (e.g., herbicides) can also be used as a seed treatment. In some embodiments, an effective concentration or an effective amount of herbicide(s), or a composition comprising an effective concentration or an effective amount of herbicide(s) can be applied directly to the seeds prior to or during the sowing of the seeds. Seed Treatment formulations may additionally comprise binders and optionally colorants.

Binders can be added to improve the adhesion of the active materials on the seeds after treatment. In one embodiments, suitable binders are block copolymers EO/PO surfactants but also polyvinylalcoholsl, polyvinylpyrrolidones, polyacrylates, polymethacrylates, polybutenes, polyisobutylenes, polystyrene, polyethyleneamines, polyethyleneamides, polyethyleneimines (Lupasol®, Polymin®), polyethers, polyurethans, polyvinylacetate, tylose and copolymers derived from these polymers. Optionally, also colorants can be included in the formulation. Suitable colorants or dyes for seed treatment formulations are Rhodamin B, C.I. Pigment Red 112, C.I. Solvent Red 1, pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1, pigment blue 80, pigment yellow 1, pigment yellow 13, pigment red 1 12, pigment red 48:2, pigment red 48:1, pigment red 57:1, pigment red 53:1, pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51, acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.

The term seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking, and seed pelleting. In one embodiment, the present invention provides a method of treating soil by the application, in particular into the seed drill: either of a granular formulation containing the herbicides as a composition/formulation (e.g., a granular formulation), with optionally one or more solid or liquid, agriculturally acceptable carriers and/or optionally with one or more agriculturally acceptable surfactants. This method is advantageously employed, for example, in seedbeds of cereals, maize, cotton, and sunflower.

The present invention also comprises seeds coated with or containing with a seed treatment formulation comprising herbicides and at least one other herbicide such as, e.g., an AHAS-inhibitor selected from the group consisting of amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethoxysulfuron, flazasulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfuron, mesosulfuron, metsulfuron, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfuron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, cloransulam, diclosulam, florasulam, flumetsulam, metosulam, penoxsulam, bispyribac, pyriminobac, propoxycarbazone, flucarbazone, pyribenzoxim, pyriftalid and pyrithiobac.

The term “coated with and/or containing” generally signifies that the active ingredient is for the most part on the surface of the propagation product at the time of application, although a greater or lesser part of the ingredient may penetrate into the propagation product, depending on the method of application. When the said propagation product is (re)planted, it may absorb the active ingredient.

In some embodiments, the seed treatment application with herbicides or with a formulation comprising the herbicides is carried out by spraying or dusting the seeds before sowing of the plants and before emergence of the plants.

In other embodiments, in the treatment of seeds, the corresponding formulations are applied by treating the seeds with an effective amount of herbicides or a formulation comprising the herbicides.

In other aspects, the present invention provides a method for combating undesired vegetation or controlling weeds comprising contacting the seeds of the herbicide-tolerant plants of the present invention before sowing and/or after pregermination with herbicides. The method can further comprise sowing the seeds, for example, in soil in a field or in a potting medium in greenhouse. The method finds particular use in combating undesired vegetation or controlling weeds in the immediate vicinity of the seed. The control of undesired vegetation is understood as the killing of weeds and/or otherwise retarding or inhibiting the normal growth of the weeds. Weeds, in the broadest sense, are understood as meaning all those plants which grow in locations where they are undesired.

The weeds of the present invention include, for example, dicotyledonous and monocotyledonous weeds. Dicotyledonous weeds include, but are not limited to, weeds of the genera: Sinapis, Lepiclium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solarium, Rorippa, Rotala, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, and Taraxacum. Monocotyledonous weeds include, but are not limited to, weeds of the genera: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cynodon, Monochoria, Fimbristyslis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alopecurus, and Apera.

In addition, the weeds of the present invention can include, for example, crop plants that are growing in an undesired location. For example, a volunteer maize plant that is in a field that predominantly comprises soybean plants can be considered a weed, if the maize plant is undesired in the field of soybean plants.

In other embodiments, in the treatment of seeds, the corresponding formulations are applied by treating the seeds with an effective amount of herbicides or a formulation comprising the herbicides.

In still further aspects, treatment of loci, plants, plant parts, or seeds of the present invention comprises application of an agronomically acceptable composition that does not contain an A.I. In one embodiment, the treatment comprises application of an agronomically acceptable composition that does not contain a herbicides A.I. In some embodiments, the treatment comprises application of an agronomically acceptable composition that does not contain a herbicides A.L, wherein the composition comprises one or more of agronomically-acceptable carriers, diluents, excipients, plant growth regulators, and the like. In other embodiments, the treatment comprises application of an agronomically acceptable composition that does not contain a herbicides A.I., wherein the composition comprises an adjuvant. In one embodiment, the adjuvant is a surfactant, a spreader, a sticker, a penetrant, a drift-control agent, a crop oil, an emulsifier, a compatibility agent, or combinations thereof.

It should also be understood that the foregoing relates to preferred embodiments of the present invention and that numerous changes may be made therein without departing from the scope of the invention. The invention is further illustrated by the following examples, which are not to be construed in any way as imposing limitations upon the scope thereof. On the contrary, it is to be clearly understood that resort may be had to various other embodiments, modifications, and equivalents thereof, which, after reading the description herein, may suggest themselves to those skilled in the art without departing from the spirit of the present invention and/or the scope of the appended claims.

Legend to PPO-inhibitors referring to Uracilpyridines which can be used in the following examples:

Uracilpyridine 1ethyl 2-[[3-[2-chloro-4-fluoro-5-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]phenoxy]-2-
pyridyl]oxy]acetate
Uracilpyridine 2ethyl 2-[[3-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-pyridyl]oxy]-2-
pyridyl]oxy]acetate
Uracilpyridine 32-[[3-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-pyridyl]oxy]-2-
pyridyl]oxy]acetic acid
Uracilpyridine 4ethyl 2-[2-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]acetate
Uracilpyridine 52-[2-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]acetic acid
Uracilpyridine 6ethyl 2-[2-[[3-bromo-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]acetate
Uracilpyridine 7ethyl 2-[2-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]-4-fluoro-phenoxy]acetate
Uracilpyridine 8ethyl 2-[2-[[3,5-difluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]acetate
Uracilpyridine 92-[2-[[3,5-difluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]acetic acid
Uracilpyridine 102-[2-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]phenoxy]-N-methylsulfonyl-acetamide
Uracilpyridine 11ethyl 2-[[3-[[3-chloro-6-[3,5-dimethyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-5-fluoro-2-
pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 12ethyl 2-[2-[[3-chloro-6-[3,5-dimethyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-5-fluoro-2-
pyridyl]oxy]phenoxy]acetate
Uracilpyridine 13allyl 2-[[3-[[3-chloro-5-fluoro-6-[3-methyl-2,6-dioxo-
4-(trifluoromethyl)pyrimidin-1-yl]-2-pyridyl]oxy]-2-
pyridyl]oxy]acetate
Uracilpyridine 14prop-2-ynyl 2-[[3-[[3-chloro-5-fluoro-6-[3-
methyl-2,6-dioxo-4-(trifluoromethyl)pyrimidin-1-
yl]-2-pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 15cyclopropylmethyl 2-[[3-[[3-chloro-5-fluoro-6-[3-
methyl-2,6-dioxo-4-(trifluoromethyl)pyrimidin-1-
yl]-2-pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 162,2-difluoroethyl 2-[[3-[[3-chloro-5-fluoro-6-[3-
methyl-2,6-dioxo-4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 17isobutyl 2-[[3-[[3-chloro-5-fluoro-6-[3-methyl-2,6-
dioxo-4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 18(2-ethoxy-2-oxo-ethyl) 2-[[3-[[3-chloro-5-fluoro-6-[3-
methyl-2,6-dioxo-4-(trifluoromethyl)pyrimidin-1-
yl]-2-pyridyl]oxy]-2-pyridyl]oxy]acetate
Uracilpyridine 192-methoxyethyl 2-[[3-[[3-chloro-5-fluoro-6-[3-methyl-
2,6-dioxo-4-(trifluoromethyl)pyrimidin-1-yl]-2-
pyridyl]oxy]-2-pyridyl]oxy]acetate

All nucleic acid coding sequence and all single and double mutants encoding a polypeptide comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, are synthesized and cloned by Geneart (Geneart AG, Regensburg, Germany). Rational design mutants are synthesized by Geneart. Random PPO gene libraries are synthesized by Geneart. Plasmids are isolated from E. coli TOP10 by performing a plasmid minpreparation and confirmed by DNA sequencing.

(Taken from: Franck E. Dayan, Pankaj R. Daga, Stephen O. Duke, Ryan M. Lee, Patrick J. Tranel, Robert J. Doerksen. Biochemical and structural consequences of a glycine deletion in the α-8 helix of protoporphyrinogen oxidase. Biochimica et Biophysica Acta 1804 (2010), 1548-56) Clones in pRSET vector are transformed into BL21(DE3)-pLysS strain of E. coli. Cells are grown in 250 mL of LB with 100 μgmL-1 of carbenicillin, shaking overnight at 37° C. Cultures are diluted in 1 L of LB with antibiotic and grown at 37° C. shaking for 2 h, induced with 1 mM IPTG and grown at 25° C. shaking for 5 more hours. The cells are harvested by centrifugation at 1600×g, washed with 0.09% NaCl, and stored at −80° C. Cells are lysed using a French press at 140 MPa in 50 mM sodium phosphate pH 7.5, 1 M NaCl, 5 mM imidazole, 5% glycerol, and 1 μg mL-1 leupeptin. Following lysis, 0.5 U of benzonase (Novagen, EMD Chemicals, Inc., Gibbstown, NJ) and PMSF (final concentration of 1 mM) are added. Cell debris is removed by centrifugation at 3000×g. His-tagged PPO proteins are purified on a nickel activated Hitrap Chelating HP column (GE Healthcare Bio-Sciences Corp., Piscataway, NJ) equilibrated with 20 mM sodium phosphate pH 8.0, 50 mM NaCl, 5 mM imidazole, 5 mM MgCl2, 0.1 mM EDTA, and 17% glycerol. PPO is eluted with 250 mM imidazole. The active protein is desalted on a PD-10 column (GE Healthcare Bio-Sciences Corp., Piscataway, NJ) equilibrated with a 20 mM sodium phosphate buffer, pH 7.5, 5 mM MgCl2, 1 mM EDTA and 17% glycerol. Each litre of culture provided approximately 10 mg of pure PPO, which is stored at −20° C. until being used in assays.

PPO protein (EC 1.3.3.4) is extracted from coleoptiles or shoots (150 g fresh weight) of dark-grown corn, black nightshade, morning glory, and velvetleaf seedlings as described previously (Grossmann et al. 2010). Before harvesting, the seedlings are allowed to green for 2 hours in the light in order to achieve the highest specific enzyme activities in the thylakoid fractions at low chlorophyll concentrations. At high chlorophyll concentrations significant quenching of fluorescence occurs, which limits the amount of green thylakoids that can be used in the test. Plant materials are hom*ogenized in the cold with a Braun blender using a fresh-weight-to-volume ratio of 1:4. hom*ogenization buffer consisted of tris(hydroxymethyl)aminomethane (Tris)-HCl (50 mM; pH 7.3), sucrose (0.5 M), magnesium chloride (1 mM), ethylenediaminetetraacetic acid (EDTA) (1 mM) and bovine serum albumin (2 g L−1). After filtration through four layers of Miracloth, crude plastid preparations are obtained after centrifugation at 10 000×g for 5 min and resuspension in hom*ogenization buffer before centrifugation at 150×g for 2 min to remove crude cell debris. The supernatant is centrifuged at 4000×g for 15 min and the pellet fraction is resuspended in 1 ml of a buffer containing Tris-HCl (50 mM; pH 7.3), EDTA (2 mM), leupeptin (2 μM), pepstatin (2 μM) and glycerol (200 ml L−1) and stored at −80° C. until use. Protein is determined in the enzyme extract with bovine serum albumin as a standard. PPO activity is assayed fluorometrically by monitoring the rate of Proto formation from chemically reduced protoporphyrinogen IX under initial velocity conditions. The assay mixture consisted of Tris-HCl (100 mM; pH 7.3), EDTA (1 mM), dithiothreitol (5 mM), Tween 80 (0.085%), protoporphyrinogen IX (2 PM), and 40 μg extracted protein in a total volume of 200 μl. The reaction is initiated by addition of substrate protoporphyrinogen IX at 22° C. saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control are prepared in dimethyl sulfoxide (DMSO) solution (0.1 mM concentration of DMSO in the assay) and added to the assay mixture in concentrations of 0.005 pM to 5 μM before incubation. Fluorescence is monitored directly from the assay mixture using a POLARstar Optima/Galaxy (BMG) with excitation at 405 nm and emission monitored at 630 nm. Non-enzymatic activity in the presence of heat-inactivated extract is negligible. Inhibition of enzyme activity induced by the herbicide is expressed as percentage inhibition relative to untreated controls. Molar concentrations of compound required for 50% enzyme inhibition (IC50 values) are calculated by fitting the values to the dose-response equation using non-linear regression analysis.

Proto is purchased from Sigma-Aldrich (Milwaukee, WI). Protogen is prepared according to Jacobs and Jacobs (N. J. Jacobs, J. M. Jacobs, Assay for enzymatic protoporphyrinogen oxidation, a late step in heme synthesis, Enzyme 28 (1982) 206-219). Assays were conducted in 100 mM sodium phosphate pH 7.4 with 0.1 mM EDTA, 0.1% Tween 20, 5 p M FAD, and 500 mM imidazole. Dose-response curves with the PPO inhibitors saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control, and MC-15608 are obtained in the presence of 150 μM Protogen. The excitation and emission bandwidths are set at 1.5 and 30 nm, respectively. All assays are made in duplicates or triplicates and measured using a POLARstar Optima/Galaxy (BMG) with excitation at 405 nm and emission monitored at 630 nm. Molar concentrations of compound required for 50% enzyme inhibition (IC50 values) were calculated by fitting the values to the dose-response equation using non-linear regression analysis. The results are shown in the following table.

Normalized
SEQ.Activity
ID(FU · SaflufenacilTrifludimoxazineSaflufenacilTrifludimoxazine
Amino Acid SubstitutionNO.min−1 · ng−1) IC50 (M)Tolerance Factor
PPO herbicide sensitive140.001.86E−095.17E−101.001.00
PPO2 WC
PPO herbicide sensitive
PPO2 AC232.001.78E−105.96E−110.100.12
dG2103 & 43.201.60E−062.12E−09860.264.09
R128L1 & 228.002.22E−077.73E−10119.601.50
R128A, G211N, F420M1 & 20.331.00E−052.91E−075376.63562.54
G211D, F420M1 & 20.403.38E−071.32E−07181.98254.58
R128A, G211V, F420M1 & 20.491.00E−051.15E−075376.63222.66
R128A, G211A, F420V1 & 20.621.00E−059.31E−085376.63180.06
R128A, G2105, F420M1 & 20.401.00E−056.83E−085376.63132.20
G211N, F420M1 & 20.561.00E−053.55E−085376.6368.62
R128A, S412N, F420M1 & 242.001.00E−052.43E−085376.6346.93
Q119L, R128A, F420M1 & 225.831.00E−052.06E−085376.6339.94
R128A, G211C, F420M1 & 212.491.00E−051.97E−085376.6338.16
R128A, G211A, F420M1 & 26.531.00E−051.52E−085376.6329.49
G211A, L397Q, F420M1 & 22.601.00E−051.09E−085376.6321.13
G211C, F420V1 & 24.237.67E−066.28E−094125.3812.14
G211A, F420V1 & 23.654.12E−065.46E−092215.8210.57
R128V, G211V1 & 20.586.60E−062.91E−093546.095.64
G210S, F420M1 & 22.221.00E−052.03E−095376.633.93
G210S, F420M1 & 22.131.00E−052.03E−095376.633.93
G211A, F420M1 & 235.952.76E−061.51E−091481.852.93
G210C, F420M1 & 25.662.58E−061.44E−091385.042.78
R128A, G210S1 & 20.561.00E−051.34E−095376.632.60
G211R1 & 21.201.13E−081.22E−096.092.36
G211V, F420M1 & 25.097.89E−061.21E−094240.142.33
G211W1 & 20.762.68E−081.10E−0914.412.13
M414Q, F420M1 & 217.202.80E−061.09E−091504.862.10
G210T1 & 21.241.06E−061.00E−09567.631.94
Q119L, F420M1 & 246.861.20E−069.78E−10644.801.89
G211C, F420M1 & 29.302.32E−068.62E−101246.071.67
F420M, d, V5271 & 218.891.19E−068.15E−10638.141.58
G211D1 & 20.802.54E−087.53E−1013.661.46
G211L1 & 20.664.27E−077.42E−10229.471.44
d_K5281 & 273.437.33E−101.42
G211P1 & 20.621.41E−087.01E−107.581.36
G211A1 & 216.813.86E−096.87E−102.081.33
G210S1 & 25.905.18E−086.39E−1027.871.24
d_M5291 & 270.496.31E−101.22
S387Y, F420M1 & 29.289.92E−076.26E−10533.181.21
D372E, F420M1 & 220.822.40E−066.21E−101287.851.20
G211N1 & 26.007.47E−096.05E−104.021.17
S412N, F420M1 & 236.541.51E−066.01E−10813.361.16
G211K1 & 26.252.43E−095.91E−101.301.14
E436I, F420M1 & 233.283.06E−065.78E−101644.411.12
E436I, F420M1 & 233.293.06E−065.78E−101644.411.12
M343T, F420M1 & 225.242.77E−065.52E−101489.901.07
R128A, G211A1 & 211.923.71E−075.39E−10199.391.04
d_K5321 & 276.245.33E−101.03
G211F1 & 20.811.79E−085.00E−109.640.97
Q447K1 & 221.008.82E−104.93E−100.470.95
d_V5271 & 274.524.40E−100.85
G211I1 & 20.951.05E−084.35E−105.630.84
Q119L, R128A, Q323H, 1 & 286.122.12E−074.00E−10114.190.77
S412N
G211V1 & 211.694.23E−093.99E−102.280.77
G211S1 & 22.862.58E−083.94E−1013.870.76
G211A, L397Q1 & 22.335.63E−073.88E−10302.700.75
d_D5301 & 269.563.61E−100.70
d_E5311 & 277.643.52E−100.68
S387L1 & 27.386.78E−093.03E−103.640.59
S412T1 & 233.246.44E−102.89E−100.350.56
G210S, G211A1 & 23.254.36E−082.70E−1023.430.52
G211T1 & 21.639.98E−082.67E−1053.650.52
S387K1 & 211.216.21E−092.57E−103.340.50
Q119L, Q323H, S412N, 1 & 251.441.41E−062.55E−10759.420.49
F420M
R128A, G211C1 & 24.283.57E−072.49E−10191.740.48
d_T5331 & 276.722.39E−100.46
d_A5341 & 264.012.34E−100.45
S412L1 & 251.354.54E−102.27E−100.240.44
S412M1 & 278.964.46E−102.25E−100.240.43
G211M1 & 25.253.11E−092.22E−101.670.43
S412V1 & 250.227.60E−102.16E−100.410.42
Q119L, Q323H, S412N1 & 252.008.24E−102.05E−100.440.40
Q323H, S412N1 & 258.704.79E−101.96E−100.260.38
S412Y1 & 243.265.39E−101.91E−100.290.37
S412D1 & 270.615.92E−101.85E−100.320.36
S412P1 & 240.066.66E−101.82E−100.360.35
d_S5231 & 256.261.73E−100.33
S412Q1 & 228.475.25E−101.72E−100.280.33
S412K1 & 295.263.10E−101.64E−100.170.32
M343T1 & 273.851.23E−091.64E−100.660.32
d_I5251 & 258.171.59E−100.31
T451V1 & 272.241.01E−091.59E−100.540.31
G211H1 & 21.782.94E−091.57E−101.580.30
S412A1 & 227.004.53E−101.53E−100.240.30
Q119L, R128A1 & 277.431.82E−071.52E−1097.590.29
S412E1 & 265.945.92E−101.51E−100.320.29
N431G1 & 253.817.68E−101.47E−100.410.28
E436I1 & 249.371.13E−091.47E−100.610.28
S412R1 & 230.416.97E−101.44E−100.380.28
Q446G1 & 271.537.40E−101.40E−100.400.27
S412I1 & 289.835.16E−101.40E−100.280.27
d_Y5261 & 240.191.39E−100.27
d_H5241 & 266.291.34E−100.26
S412H1 & 283.204.98E−101.33E−100.270.26
R335S1 & 258.658.02E−101.21E−100.430.23
G210C, G211A1 & 22.785.80E−081.16E−1031.160.22
S433P1 & 258.766.87E−101.14E−100.370.22
F345G1 & 243.657.17E−101.14E−100.390.22
d_D5221 & 229.161.13E−100.22
D435S1 & 239.668.39E−101.13E−100.450.22
K428D1 & 265.876.17E−101.11E−100.330.22
G210C, G211C1 & 21.074.42E−081.10E−1023.750.21
M414Q1 & 242.491.15E−091.04E−100.620.20
G210C1 & 22.084.74E−089.93E−1125.500.19
S412W1 & 221.685.82E−109.86E−110.310.19
S412F1 & 233.893.21E−108.76E−110.170.17
T358D1 & 254.969.66E−108.33E−110.520.16
G210T, G211A1 & 20.613.67E−068.33E−111970.690.16
S464R1 & 249.365.35E−108.11E−110.290.16
D372E1 & 246.861.02E−098.02E−110.550.16
S412G1 & 249.904.15E−107.95E−110.220.15
R128A, S412N1 & 255.341.89E−077.45E−11101.430.14
R425H1 & 221.447.71E−107.15E−110.410.14
R128A, G120C1 & 23.772.85E−067.15E−111532.530.14
G210S, G211C1 & 20.862.09E−086.99E−1111.210.14
S412C1 & 219.622.69E−106.70E−110.140.13
S412N1 & 215.001.01E−086.69E−115.430.13
Q119L, S412N1 & 248.646.43E−106.13E−110.350.12
K373D1 & 226.178.76E−104.64E−110.470.09
S387Y1 & 217.021.27E−094.51E−110.680.09
E356K1 & 219.907.12E−104.40E−110.380.09
i_Q3911 & 214.307.99E−103.32E−110.430.06
D372E, K373D1 & 214.215.78E−102.92E−110.310.06
D372E, K373D1 & 240.005.78E−102.92E−110.310.06
C415H1 & 220.358.15E−102.52E−110.440.05
M414Q, E436I1 & 232.721.19E−090.640.00
R128A, G211A, S387L, F420M1 & 251.201.00E−055376.63
G210T, G211C1 & 20.508.97E−064823.04
Q119T, G211A, F420M1 & 238.683.49E−061878.54
S387L, F420M1 & 210.442.95E−061584.85
G210C, L397Q1 & 20.222.47E−061326.31
G210C, G211V1 & 20.182.13E−061144.05
G211A, S387L, F420M1 & 2115.081.99E−061069.44
Q119T, F420M1 & 256.447.90E−07424.49
R128A, S387L1 & 253.923.25E−07174.56
K127N, R128C1 & 212.163.09E−0816.63
S387V1 & 23.841.76E−082.06E−109.48
S387V, R425N1 & 25.001.54E−088.29
Y129N1 & 26.167.20E−093.87
Y129F1 & 245.065.57E−092.99
Q119T1 & 212.525.46E−092.93
Q119I1 & 26.614.68E−092.52
M343I1 & 221.004.29E−092.31
S387T1 & 218.254.22E−092.27
S387I1 & 25.334.11E−092.21
M414W1 & 29.564.09E−092.20
D372S1 & 210.394.07E−092.19
d_P401 & 238.643.93E−092.11
G211A, S387L1 & 238.683.58E−091.92
D372N1 & 218.563.53E−091.90
G264A1 & 223.603.42E−091.84
E436M1 & 26.853.28E−091.76
Q323P1 & 242.673.25E−091.75
M414D1 & 212.703.20E−091.72
S387L, M414Q1 & 20.003.13E−091.68
Q119T, M414Q1 & 217.523.06E−091.65
S387D1 & 233.373.00E−091.61
Q119H1 & 24.522.98E−091.60
M414R1 & 27.322.91E−091.56
M414A1 & 23.162.83E−091.52
D286G1 & 227.602.79E−091.50
i_Q391, H392K, N393H1 & 236.902.78E−091.49
D372K1 & 222.192.77E−091.49
E436A1 & 221.312.73E−091.47
M343K1 & 223.302.66E−091.43
S387N1 & 24.572.65E−091.42
K248G1 & 252.402.65E−091.42
D372F1 & 215.162.58E−091.39
S387F1 & 29.562.51E−091.35
Q119A1 & 28.602.51E−091.35
M343A1 & 246.402.49E−091.34
M414V1 & 224.602.44E−091.31
E436W1 & 214.872.43E−091.31
M343F1 & 264.972.41E−091.30
S387C1 & 228.972.38E−091.28
M343R1 & 238.242.38E−091.28
E436Y1 & 222.322.34E−091.26
D372V1 & 222.282.25E−091.21
S387L, S412N, E436I1 & 210.802.25E−091.21
D372M1 & 211.962.23E−091.20
S412N, E436I1 & 255.602.19E−091.18
D372Y1 & 229.552.19E−091.18
M414Y1 & 241.862.18E−091.17
M343D1 & 2109.092.17E−091.16
S387M1 & 217.372.15E−091.16
N126H1 & 243.522.11E−091.13
M414S1 & 29.982.10E−091.13
M414H1 & 218.842.09E−091.13
M343G1 & 257.772.07E−091.11
D372Q1 & 227.272.07E−091.11
M343L1 & 216.362.06E−091.11
E436V1 & 225.922.06E−091.11
Q323K1 & 211.362.06E−091.11
P260R1 & 238.882.04E−091.10
D372P1 & 218.902.04E−091.10
M414N1 & 25.762.02E−091.09
M343S1 & 240.541.96E−091.05
E436F1 & 210.801.95E−091.05
E436G1 & 210.021.94E−091.04
Q323V1 & 237.401.94E−091.04
Q323Y1 & 216.921.94E−091.04
D372T1 & 232.591.94E−091.04
S387H1 & 224.321.93E−091.04
L400F1 & 242.921.93E−091.04
Q323N1 & 217.721.91E−091.03
M414K1 & 210.501.88E−091.01
M414I1 & 27.401.88E−091.01
E436S1 & 219.881.88E−091.01
A104L1 & 237.881.86E−091.00
Q119W1 & 22.841.86E−091.00
S108R1 & 241.221.85E−090.99
V53I1 & 228.301.83E−090.99
M343V1 & 224.661.83E−090.98
H65S1 & 225.721.79E−090.96
Q323S1 & 215.601.79E−090.96
Q323D1 & 297.371.78E−090.96
D372G1 & 225.121.75E−090.94
E436K1 & 212.711.72E−090.93
S387G1 & 212.561.72E−090.93
S387A1 & 220.131.68E−090.90
G308D1 & 216.521.65E−090.89
E436D1 & 248.581.64E−090.88
Q323M1 & 210.271.64E−090.88
L139I1 & 238.441.64E−090.88
G211A, M414Q1 & 260.721.61E−090.86
Q323I1 & 237.281.60E−090.86
K61R1 & 240.921.59E−090.86
Q323E1 & 220.851.53E−090.82
G210A1 & 21.961.51E−093.34E−110.81
E249D1 & 232.361.51E−090.81
Q119V1 & 224.431.49E−090.80
Q119S1 & 23.241.49E−090.80
K87D1 & 226.401.48E−090.79
L71V1 & 229.801.47E−090.79
S64K1 & 236.441.46E−090.78
D372A1 & 223.841.44E−090.78
D372R1 & 234.711.44E−090.77
R116E1 & 28.741.42E−090.76
S387L, E436I1 & 211.121.41E−090.76
V262K1 & 214.761.41E−090.76
Q323T1 & 233.631.40E−090.75
Q323W1 & 226.801.39E−090.75
Q323G1 & 233.711.38E−090.74
Q119C1 & 216.321.38E−090.74
S412N, M414Q1 & 253.921.37E−090.74
E436N1 & 223.801.36E−090.73
G32A1 & 237.881.35E−090.72
d_K2501 & 249.521.35E−090.72
M343Q1 & 233.341.32E−090.71
Q119T, M414Q, E436I1 & 216.441.31E−090.70
D372I1 & 215.581.29E−090.69
Q119T, G211A, S387L1 & 29.841.29E−090.69
G252K1 & 220.801.28E−090.69
I257G1 & 239.081.28E−090.69
D372L1 & 27.591.27E−090.68
D372H1 & 220.081.27E−090.68
A255V1 & 253.621.26E−090.68
D453G1 & 256.621.26E−090.68
I91L1 & 235.481.24E−090.66
L245T1 & 239.721.22E−090.66
D482G1 & 223.581.21E−090.65
S387L, S412N1 & 26.721.20E−090.65
Q323C1 & 219.951.20E−090.65
M414L1 & 217.361.20E−090.64
Q119R1 & 24.291.20E−090.64
M434C1 & 233.311.19E−090.64
M343W1 & 230.461.19E−090.64
E436H1 & 224.431.18E−090.64
S387W1 & 23.311.16E−090.62
N309G1 & 240.041.15E−090.62
K259G1 & 245.701.14E−090.61
E436L1 & 29.441.13E−090.61
S246A1 & 240.081.12E−090.60
K127F1 & 211.841.12E−090.60
Q119T, S412N, E436I1 & 230.881.12E−090.60
Q119T, S412N1 & 241.721.11E−090.60
Q119M1 & 241.271.11E−090.60
E253G1 & 237.221.10E−090.59
S387E1 & 258.751.10E−090.59
Q119T, S387L, E436I1 & 24.681.10E−090.59
D88S1 & 224.501.10E−090.59
Q119T, E436I1 & 264.801.09E−090.59
L67V1 & 234.121.07E−090.57
N254S1 & 259.681.06E−090.57
V85N1 & 226.941.05E−090.57
Q119Y1 & 28.071.05E−090.57
P305S1 & 250.581.05E−090.56
E436R1 & 221.811.03E−090.55
M414F1 & 230.061.02E−090.55
M343H1 & 230.841.02E−090.55
K83R1 & 217.241.01E−090.54
D372W1 & 217.841.00E−090.54
M343Y1 & 29.029.87E−100.53
E436C1 & 219.629.74E−100.52
Q323F1 & 222.619.52E−100.51
K127N1 & 28.209.37E−100.50
E436T1 & 215.799.35E−100.50
M343N1 & 238.499.29E−100.50
D372C1 & 225.319.14E−100.49
E103A1 & 226.749.00E−100.48
K127H1 & 27.848.91E−100.48
Q323A1 & 232.818.75E−100.47
Q119F1 & 27.968.68E−100.47
Q291G1 & 224.168.65E−100.47
L82I1 & 218.728.57E−100.46
H391K1 & 239.768.27E−100.44
M414T1 & 219.078.25E−100.44
N392H1 & 218.328.16E−100.44
K127R1 & 219.728.09E−100.44
S76D1 & 225.468.04E−100.43
Q119E1 & 23.768.02E−100.43
K127P1 & 215.168.01E−100.43
Q323R1 & 244.357.73E−100.42
K86S1 & 222.387.65E−100.41
M414C1 & 222.857.56E−100.41
K63S1 & 225.747.44E−100.40
A57V1 & 226.827.31E−100.39
E224G1 & 219.687.28E−100.39
K127M1 & 225.967.08E−100.38
S387Q1 & 213.816.91E−100.37
Q119K1 & 27.036.84E−100.37
E436Q1 & 213.286.66E−100.36
K127L1 & 216.566.36E−100.34
K127Q1 & 213.446.27E−100.34
M414E1 & 229.356.23E−100.33
Q323L1 & 221.446.19E−100.33
K127A1 & 28.086.14E−100.33
Q159K1 & 266.105.94E−100.32
K127V1 & 232.845.12E−100.28
K127G1 & 26.925.09E−100.27
K127Y1 & 214.044.98E−100.27
K127S1 & 25.644.97E−100.27
K127D1 & 280.644.91E−100.26
Q119L, Q323H1 & 2114.454.82E−100.26
Y129W1 & 2270.884.45E−100.24
K127I1 & 231.284.42E−100.24
K127W1 & 29.164.40E−100.24
V106A1 & 226.684.28E−100.23
K127T1 & 221.003.54E−100.19
K127C1 & 210.763.42E−100.18
K127E1 & 26.601.63E−100.09

PPO-derivative herbicide tolerant soybean (Glyceine max), corn (Zea mays), and Canola (Brassica napus or Brassica Rapa var. or Brassica campestris L.) plants are produced by a method as described by Olhoft et al. (US patent 2009/0049567). For transformation of soybean or Arabidlopsis thaliana, Wildtype or Mutated PPO sequences encoding mutated PPO polypeptides comprising SEQ ID NO: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, or 129, are cloned with standard cloning techniques as described in Sambrook et al. (Molecular cloning (2001) Cold Spring Harbor Laboratory Press) in a binary vector containing resistance marker gene cassette (AHAS) and mutated PPO sequence (marked as GOI) in between ubiquitin promoter (PcUbi) and nopaline synthase terminator (NOS) sequence. For corn transformation, Wildtype or Mutated PPO sequences are cloned with standard cloning techniques as described in Sambrook et al. (Molecular cloning (2001) Cold Spring Harbor Laboratory Press) in a binary vector containing resistance marker gene cassette (AHAS) and mutated PPO sequence (marked as GOI) in between corn ubiquitin promoter (ZmUbi) and nopaline synthase terminator (NOS) sequence. Binary plasmids are introduced to Agrobacterium tumefaciens for plant transformation. Plasmid constructs are introduced into soybean's axillary meristem cells at the primary node of seedling explants via Agrobacterium-mediated transformation. After inoculation and co-cultivation with Agrobacteria, the explants are transferred to shoot introduction media without selection for one week. The explants are subsequently transferred to a shoot induction medium with 1-3 μM imazapyr (Arsenal) for 3 weeks to select for transformed cells. Explants with healthy callus/shoot pads at the primary node are then transferred to shoot elongation medium containing 1-3 μM imazapyr until a shoot elongated or the explant died. Transgenic plantlets are rooted, subjected to TaqMan analysis for the presence of the transgene, transferred to soil and grown to maturity in greenhouse. Transformation of corn plants are done by a method described by McElver and Singh (WO 2008/124495). Plant transformation vector constructs containing mutated PPO sequences are introduced into maize immature embryos via Agrobacterium-mediated transformation.

Transformed cells are selected in selection media supplemented with 0.5-1.5 μM imazethapyr for 3-4 weeks. Transgenic plantlets are regenerated on plant regeneration media and rooted afterwards. Transgenic plantlets are subjected to TaqMan analysis for the presence of the transgene before being transplanted to potting mixture and grown to maturity in greenhouse. Arabidopsis thaliana are transformed with wildtype or mutated PPO sequences by floral dip method as described by McElver and Singh (WO 2008/124495). Transgenic Arabidopsis plants are subjected to TaqMan analysis for analysis of the number of integration loci. Transformation of Oryza sativa (rice) are done by protoplast transformation as described by Peng et al. (U.S. Pat. No. 6,653,529) T0 or T1 transgenic plant of soybean, corn, and rice containing mutated PPO sequences are tested for improved tolerance to PPO-derived herbicides in greenhouse studies and mini-plot studies with the following PPO-inhibiting herbicides: saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control.

Transgenic Arabidopsis thaliana plants are assayed for improved tolerance to saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control in 48-well plates. Therefore, T2 seeds are surface sterilized by stirring for 5 min in ethanol+water (70+30 by volume), rinsing one time with ethanol+water (70+30 by volume) and two times with sterile, deionized water. The seeds are resuspended in 0.1% agar dissolved in water (w/v) Four to five seeds per well are plated on solid nutrient medium consisting of half-strength murashige skoog nutrient solution, pH 5.8 (Murashige and Skoog (1962) Physiologia Plantarum 15: 473-497). Compounds are dissolved in dimethylsulfoxid (DMSO) and added to the medium prior solidification (final DMSO concentration 0.1%). Multi well plates are incubated in a growth chamber at 220 C, 75% relative humidity and 110 μmol Phot*m−2*s−1 with 14:10 h light:dark photoperiod. Growth inhibition is evaluated seven to ten days after seeding in comparison to wild type plants.

Additionally, transgenic T1 Arabidopsis plants are tested for improved tolerance to PPO-inhibiting herbicides in greenhouse studies with the following PPO-inhibiting herbicides: saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control.

Additionally, transgenic T2 Arabidopsis plants were tested for improved tolerance to PPO-inhibiting herbicides. Plants were treated with the following herbicides in the greenhouse: Saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), Uracilpyridine 2, Uracilpyridine 4, Uracilpyridine 1, Sulfentrazone, and Flumioxazin+1% MSO. Results are shown in FIGS. 3 through 11.

An in vitro tissue culture mutagenesis assay has been developed to isolate and characterize plant tissue (e.g., maize, rice tissue) that is tolerant to protoporphyrinogen oxidase inhibiting herbicides, (saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control). The assay utilizes the somaclonal variation that is found in in vitro tissue culture. Spontaneous mutations derived from somaclonal variation can be enhanced by chemical mutagenesis and subsequent selection in a stepwise manner, on increasing concentrations of herbicide.

The present invention provides tissue culture conditions for encouraging growth of friable, embryogenic maize or rice callus that is regenerable. Calli are initiated from 4 different maize or rice cultivars encompassing Zea mays and Japonica (Taipei 309, Nipponbare, Koshihikari) and Indica (Indica 1) varieties, respectively. Seeds are surface sterilized in 70% ethanol for approximately 1 min followed by 20% commercial Clorox bleach for 20 minutes. Seeds are rinsed with sterile water and plated on callus induction media. Various callus induction media are tested. The ingredient lists for the media tested are presented in Table y.

TABLE Y
IngredientSupplierR001MR025MR026MR327MR008MMS711R
B5 VitaminsSigma1.0 X
MS saltsSigma1.0 X1.0 X1.0 X1.0 X
MS VitaminsSigma1.0 X1.0 X
N6 saltsPhytotech 4.0 g/L4.0 g/L
N6 vitaminsPhytotech 1.0 X1.0 X
L-ProlineSigma2.9 g/L0.5 g/L1.2 g/L
CasanninoBD0.3 g/L0.3 g/L2 g/L
Acids
CaseinSigma1.0 g/L
Hydrolysate
L-AspPhytotech150 mg/L
Monohydrate
Nicotinic AcidSigma0.5 mg/L
Pyridoxine HClSigma0.5 mg/L
Thiamine HClSigma1.0 mg/L
Myo-inositolSigma100 mg/L
MESSigma500 mg/L500 mg/L500 mg/L500 mg/L500 mg/L500 mg/L
MaltoseVWR30g/L30g/L30g/L30 g/L
Sorbitolduch*efa30g/L
SucroseVWR10 g/L30 g/L
NAAduch*efa50μg/L
2,4-DSigma2.0 mg/L1.0 mg/L
MgCl2•6H2OVWR750 mg/L
→pH5.85.85.85.85.85.7
Gelriteduch*efa4.0g/L2.5 g/L
Agarose Type1Sigma7.0 g/L10 g/L10 g/L
→Autoclave15 min15 min15 min15 min15 min20 min
KinetinSigma2.0 mg/L2.0 mg/L
NAAduch*efa1.0 mg/L1.0 mg/L
ABASigma5.0 mg/L
Cefotaxinneduch*efa0.1 g/L0.1 g/L0.1 g/L
Vancomycinduch*efa0.1g/L0.1g/L0.1g/L
G418 Disulfate Sigma20 mg/L20 mg/L20 mg/L

R001M callus induction media is selected after testing numerous variations. Cultures are kept in the dark at 30° C. Embryogenic callus is subcultured to fresh media after 10-14 days.

Once tissue culture conditions are determined, further establishment of selection conditions are established through the analysis of tissue survival in kill curves with saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. Careful consideration of accumulation of the herbicide in the tissue, as well as its persistence and stability in the cells and the culture media is performed. Through these experiments, a sub-lethal dose has been established for the initial selection of mutated material. After the establishment of the starting dose of saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control in selection media, the tissues are selected in a step-wise fashion by increasing the concentration of the PPO inhibitor with each transfer until cells are recovered that grew vigorously in the presence of toxic doses. The resulting calli are further subcultured every 3-4 weeks to R001M with selective agent. Over 26,000 calli are subjected to selection for 4-5 subcultures until the selective pressure is above toxic levels as determined by kill curves and observations of continued culture. Alternatively, liquid cultures initiated from calli in MS711R with slow shaking and weekly subcultures. Once liquid cultures are established, selection agent is added directly to the flask at each subculture. Following 2-4 rounds of liquid selection, cultures are transferred to filters on solid R001M media for further growth.

Tolerant tissue is regenerated and characterized molecularly for PPO gene sequence mutations and/or biochemically for altered PPO activity in the presence of the selective agent. In addition, genes involved directly and/or indirectly in tetrapyrrole biosynthesis and/or metabolism pathways are also sequenced to characterize mutations. Finally, enzymes that change the fate (e.g. metabolism, translocation, transportation) are also sequence to characterized mutations. Following herbicide selection, calli are regenerated using a media regime of R025M for 10-14 days, R026M for ca. 2 weeks, R327M until well formed shoots are developed, and R008S until shoots are well rooted for transfer to the greenhouse. Regeneration is carried out in the light. No selection agent is included during regeneration. Once strong roots are established, MO regenerants are transplant to the greenhouse in square or round pots. Transplants are maintained under a clear plastic cup until they are adapted to greenhouse conditions. The greenhouse is set to a day/night cycle of 27° C./21° C. (80° F./70° F.) with 600 W high pressure sodium lights supplementing light to maintain a 14-hour day length. Plants are watered according to need, depending in the weather and fertilized daily.

Leaf tissue is collected from clonal plants separated for transplanting and analyzed as individuals. Genomic DNA is extracted using a Wizard® 96 Magnetic DNA Plant System kit (Promega, U.S. Pat. Nos. 6,027,945 & 6,368,800) as directed by the manufacturer. Isolated DNA is PCR amplified using the appropriate forward and reverse primer.

PCR amplification is performed using Hotstar Taq DNA Polymerase (Qiagen) using touchdown thermocycling program as follows: 96° C. for 15 min, followed by 35 cycles (96° C., 30 sec; 58° C.-0.2° C. per cycle, 30 sec; 72° C., 3 min and 30 sec), 10 min at 72° C. PCR products are verified for concentration and fragment size via agarose gel electrophoresis. Dephosphorylated PCR products are analyzed by direct sequence using the PCR primers (DNA Landmarks, or Entelechon). Chromatogram trace files (.scf) are analyzed for mutation relative to the wild-type gene using Vector NTI Advance 10™ (Invitrogen). Based on sequence information, mutations are identified in several individuals. Sequence analysis is performed on the representative chromatograms and corresponding AlignX alignment with default settings and edited to call secondary peaks.

T0 or T1 transgenic plant of soybean, corn, Canola varieties and rice containing PPO1 and or PPO2 sequences are tested for improved tolerance to herbicides in greenhouse studies and mini-plot studies with the following herbicides: saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. For the pre-emergence treatment, the herbicides are applied directly after sowing by means of finely distributing nozzles. The containers are irrigated gently to promote germination and growth and subsequently covered with transparent plastic hoods until the plants have rooted. This cover causes uniform germination of the test plants, unless this has been impaired by the herbicides. For post emergence treatment, the test plants are first grown to a height of 3 to 15 cm, depending on the plant habit, and only then treated with the herbicides. For this purpose, the test plants are either sown directly, and grown in the same containers or they are first grown separately and transplanted into the test containers a few days prior to treatment.

For testing of TO plants, cuttings can be used. In the case of soybean plants, an optimal shoot for cutting is about 7.5 to 10 cm tall, with at least two nodes present. Each cutting is taken from the original transformant (mother plant) and dipped into rooting hormone powder (indole-3-butyric acid, IBA). The cutting is then placed in oasis wedges inside a bio-dome. Wild type cuttings are also taken simultaneously to serve as controls. The cuttings are kept in the bio-dome for 5-7 days and then transplanted to pots and then acclimated in the growth chamber for two more days. Subsequently, the cuttings are transferred to the greenhouse, acclimated for approximately 4 days, and then subjected to spray tests as indicated. Depending on the species, the plants are kept at 10-25° C. or 20-35° C. The test period extends over 3 weeks. During this time, the plants are tended and their response to the individual treatments is evaluated. Herbicide injury evaluations are taken at 2 and 3 weeks after treatment. Plant injury is rated on a scale of 0% to 100%, 0% being no injury and 100% being complete death.

Transgenic Arabidopsis thaliana plants are assayed for improved tolerance to saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control, in 48-well plates. Therefore, T2 seeds are surface sterilized by stirring for 5 min in ethanol+water (70+30 by volume), rinsing one time with ethanol+water (70+30 by volume) and two times with sterile, deionized water. The seeds are resuspended in 0.1% agar dissolved in water (w/v) Four to five seeds per well are plated on solid nutrient medium consisting of half-strength murashige skoog nutrient solution, pH 5.8 (Murashige and Skoog (1962) Physiologia Plantarum 15: 473-497). Compounds are dissolved in dimethylsulfoxid (DMSO) and added to the medium prior solidification (final DMSO concentration 0.1%). Multi well plates are incubated in a growth chamber at 220 C, 75% relative humidity and 110 μmol Phot*m−2*s−1 with 14:10 h light:dark photoperiod. Growth inhibition was evaluated seven to ten days after seeding in comparison to wild type plants. Additionally, transgenic T1 Arabidopsis plants were tested for improved tolerance to herbicides in greenhouse studies with the following herbicides: saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. The results are shown in the following table and in FIGS. 1 and 2.

Germination Assay - trangenic ARBTH germinating
in medium containing selection agent
Tolerance Factor
EventSpecies_gene_substitutionCompoundIC 50 (M)(non transgeneic = 1.0)
non-transgenic (MC-24)Saflufenacil2.50E−081
AMATU_PPO2_wild_typeSaflufenacil1.06E−0710
DAMATU_PPO2_G211A_F420MSaflufenacil2.50E−051000
MAMATU_PPO2_G211A_F420MSaflufenacil2.50E−051000
PAMATU_PPO2_G211A_F420MSaflufenacil7.50E−06300
QAMATU_PPO2_G211A_F420MSaflufenacil7.50E−06300
RAMATU_PPO2_G211A_F420MSaflufenacil7.50E−06300

Media is selected for use and kill curves developed as specified above. For selection, different techniques are utilized. Either a step wise selection is applied, or an immediate lethal level of herbicide is applied. In either case, all of the calli are transferred for each new round of selection. Selection is 4-5 cycles of culture with 3-5 weeks for each cycle. Cali are placed onto nylon membranes to facilitate transfer (200 micron pore sheets, Biodesign, Saco, Maine). Membranes are cut to fit 100×20 mm Petri dishes and are autoclaved prior to use 25-35 calli (average weight/calli being 22 mg) are utilized in every plate. In addition, one set of calli are subjected to selection in liquid culture media with weekly subcultures followed by further selection on semi-solid media. Mutant lines are selected using saflufenacil, 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin), flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. Efficiencies of obtaining mutants is high either based on a percentage of calli that gave rise to a regenerable, mutant line or the number of lines as determined by the gram of tissue utilized.

Immature embryos are transformed according to the procedure outlined in Peng et al. (WO2006/136596). Plants are tested for the presence of the T-DNA by Taqman analysis with the target being the nos terminator which is present in all constructs. Healthy looking plants are sent to the greenhouse for hardening and subsequent spray testing. The plants are individually transplanted into MetroMix 360 soil in 4″ pots. Once in the greenhouse (day/night cycle of 27° C./21° C. with 14 hour day length supported by 600 W high pressure sodium lights), they are allowed to grow for 14 days. They are then sprayed with a treatment of 25 to 200 g ai/ha saflufenacil+1.0% v/v methylated seed oil (MSO) and/or 25-200 g ai/ha 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) plus 1% MSO. Other PPO inhibiting herbicides are also tested in a similar fashion for confirming cross resistance: flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. Herbicide injury evaluations are taken at 7, 14 and 21 days after treatment. Herbicide injury evaluations are taken 2, 7, 14 and 21 days post-spray to look for injury to new growth points and overall plant health. The top survivors are transplanted into gallon pots filled with MetroMix 360 for seed production.

In addition, T1 transgenic maize harboring Amtu_PPO2 variants was tested for tolerance for pre-emergence application of Saflufenacil. Seeds were planted in a mixture of sand an Metromix and then immediately treated with 50 and 200 g ai/ha Saflufenacil. Seeds and plantlets were assessed for germination and root length. Results are shown in FIG. 14.

Soybean cv Jake is transformed as previously described by Siminszky et al., Phytochem Rev. 5:445-458 (2006). After regeneration, transformants are transplanted to soil in small pots, placed in growth chambers (16 hr day/8 hr night; 25° C. day/23° C. night; 65% relative humidity; 130-150 microE m-2 s-1) and subsequently tested for the presence of the T-DNA via Taqman analysis. After a few weeks, healthy, transgenic positive, single copy events are transplanted to larger pots and allowed to grow in the growth chamber. An optimal shoot for cutting is about 3-4 inches tall, with at least two nodes present. Each cutting is taken from the original transformant (mother plant) and dipped into rooting hormone powder (indole-3-butyric acid, IBA). The cutting is then placed in oasis wedges inside a bio-dome. The mother plant is taken to maturity in the greenhouse and harvested for seed. Wild type cuttings are also taken simultaneously to serve as negative controls. The cuttings are kept in the bio-dome for 5-7 days and then transplanted to 3 inch pots and then acclimated in the growth chamber for two more days. Subsequently, the cuttings were transferred to the greenhouse, acclimated for approximately 4 days, and then sprayed with a treatment of 0-200 g ai/ha saflufenacil plus 1% MSO and/or 25-200 g ai/ha 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione (CAS 1258836-72-4/trifludimoxazin) plus 1% MSO. Other PPO inhibiting herbicides are also tested in a similar fashion for confirming cross resistance: flumioxazin, butafenacil, acifluorfen, lactofen, bifenox, sulfentrazone, and photosynthesis inhibitor diuron as negative control. Herbicide injury evaluations are taken at 7 days after treatment. Results are shown in FIGS. 12 and 13.

The following gives a definition of the injury scores measured above:

Score Description of Injury

    • 0 No Injury
    • 1 Minimal injury, only a few patches of leaf injury or chlorosis.
    • 2 Minimal injury with slightly stronger chlorosis. Overall growth points remain undamaged.
    • 3 Slightly stronger injury on secondary leaf tissue, but primary leaf and growth points are still undamaged.
    • 4 Overall plant morphology is slightly different, some chlorosis and necrosis in secondary growth points and leaf tissue. Stems are intact. Regrowth is highly probable within 1 week.
    • 5 Overall plant morphology is clearly different, some chlorosis and necrosis on a few leaves and growth points, but primary growth point is intact. Stem tissue is still green. Regrowth is highly probably within 1 week.
    • 6 Strong injury can be seen on the new leaflet growth. Plant has a high probability to survive only through regrowth at different growth points. Most of the leaves are chlorotic/necrotic but stem tissue is still green. May have regrowth but with noticeable injured appearance.
    • 7 Most of the active growth points are necrotic. There may be a single growth point that could survive and may be partially chlorotic or green and partially necrotic. Two leaves may still be chlorotic with some green; the rest of the plant including stem is necrotic.
    • 8 Plant will likely die, and all growth points are necrotic. One leaf may still be chlorotic with some green. The remainder of the plant is necrotic.
    • 9 Plant is dead.
    • *Not tested

Transient expression of mutated PPO sequences as wildtype or with respective mutations were done as described previously (Voinnet O., et al., 2003, The Plant Journal 33, 949-956). In brief, cloning of GOI and Agrobacterium transformation (strain: GV2260) were done as described in EXAMPLE 5. Young leaves of Nicotiana benthamiana were infiltrated with transgenic Agrobacterium suspension (OD600 of 1.0) harboring binary vector constructs containing a GOI gene controlled by a promoter and terminator sequence. 48 h to 72 h after infiltration punches of leave discs (0.75 cm in diameter) were transferred to 6-well plates with medium (half strength Linsmaier-Skoog (Linsmaier and Skoog (1965) Physiol. Plant. 18: 100-127) nutrient solution or water) containing herbicide of interest in different concentrations. Multi well plates were incubated in a growth chamber at 220 C, 75% relative humidity and 110 μmol Phot*m−2*s−1 with 14:10 h light:dark photoperiod.

Leaf discs, generated as described in EXAMPLE 14, expressing a protein encoded by GOI, were subjected to analysis on improved tolerance to herbicide treatment. For analysis of herbicide damage, chlorophyll fluorescence were identified as indicative marker (Dayan and Zaccaro (2012) Pest. Biochem. Physiol. 102: 189-197). In addition to monitor herbicide effect by visual inspection the photosynthetic yield of photosystem II were done with a MAXI imaging PAM machine (IMAGINE-PAM M-Series, Walz, Effeltrich, Germany) 48 h after starting herbicide treatment. PSII yield were measured as per manufacturer instructions. Tolerance factors were calculated based on IC50 values of PSII yield inhibition of transformed versus empty vector-transformed leaf discs. IC50 of PSII yield inhibition in empty vector-transformed leaf discs treated with Saflufenacil or 1,5-dimethyl-6-thioxo-3-(2,2,7-trifluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-1,3,5-triazinane-2,4-dione for 48 h was measured with 1.1*10−7 M or 1.1*10−8 M, respectively.

PLANTS HAVING INCREASED TOLERANCE TO HERBICIDES (2024)
Top Articles
System for secure peer-to-peer interactions with event-based confirmation triggering mechanism
Informe - Como abordar los problemas psicosociales - Derecho Penal I | Studenta
Supermotocross Points Standings
Consignment Shops Milford Ct
Alvin Isd Ixl
Corgsky Puppies For Sale
Spectrum Store Appointment
Mâcon: Stadtplan, Tipps & Infos | ADAC Maps
Craigslist The Big Island
Carmax Chevrolet Tahoe
Barbershops near me in Jupiter
KMS ver. 1.2.355 – Haste & Tactical Relay
Hangar 67
Mannat Indian Grocers
Big Lots $99 Fireplace
Advanced Eyecare Bowling Green Mo
Kind Farms Reserve Medical And Recreational Cannabis Photos
Panic at the disco: Persona 4 Dancing All Night review | Technobubble
Www.binghamton Craigslist.com
Craigslist Of Valdosta Georgia
Offres Emploi Purchasing manager Paris (75000) | HelloWork
What You Need to Know About County Jails
Waifu Fighter F95
Springfield Ma Craigslist
Point After Salon
Craftybase Coupon
Kemono Party Only Fans
Between Friends Comic Strip Today
Burlington Spectrum Tucson
Zmanim 10977
M3Gan Showtimes Near Cinemark North Hills And Xd
The Listings Project New York
Mike Norvell Height
Milepslit Ga
Everything 2023's 'The Little Mermaid' Changes From the Original Disney Classic
Open The Excel Workbook Revenue.xls From The Default Directory
Dr Bizzaro Bubble Tea Menu
Appsanywhere Mst
Documentaries About FLDS: Insightful Looks into the Fundamentalist Church
Busted Bell County
How Much Is Felipe Valls Worth
Lindy Kendra Scott Obituary
Download Diablo 2 From Blizzard
Pinellas Fire Active Calls
Obtaining __________ Is A Major And Critical Closure Activity.
Kingsport Weather Channel
Dungeon Family Strain Leafly
Live TV | Halifax | CBC Gem
The Complete History Of The Yahoo Logo - Hatchwise
Milly Bobby Brown Nsfw
Richy Rich Dispensary
Lharkies
Latest Posts
Article information

Author: Rev. Leonie Wyman

Last Updated:

Views: 5714

Rating: 4.9 / 5 (59 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Rev. Leonie Wyman

Birthday: 1993-07-01

Address: Suite 763 6272 Lang Bypass, New Xochitlport, VT 72704-3308

Phone: +22014484519944

Job: Banking Officer

Hobby: Sailing, Gaming, Basketball, Calligraphy, Mycology, Astronomy, Juggling

Introduction: My name is Rev. Leonie Wyman, I am a colorful, tasty, splendid, fair, witty, gorgeous, splendid person who loves writing and wants to share my knowledge and understanding with you.